
1

BD-SAS: Enabling Dynamic Spectrum Sharing in
Low-trust Environment

Yang Xiao, Member, IEEE, Shanghao Shi, Student Member, IEEE, Wenjing Lou, Fellow, IEEE,
Chonggang Wang, Fellow, IEEE, Xu Li, Ning Zhang, Member, IEEE, Y. Thomas Hou, Fellow, IEEE,

Jeffrey H. Reed, Fellow, IEEE

Abstract—The spectrum access system (SAS) designated by
the FCC follows a centralized server-client model where a
spectrum user registers with one SAS service provider for
spectrum allocation and other spectrum management functions.
This model, however, is vulnerable to adversarial influence on
individual SAS servers, causing concerns over system reliability
and trustworthiness, especially when the ecosystem embraces
a growing base of SAS service providers and heterogeneous
user requirements. In this paper, we propose a blockchain-
based decentralized SAS architecture called BD-SAS to provide
SAS services securely and efficiently, without assuming trust in
individual SAS servers. BD-SAS is backward compatible with
the existing SAS infrastructure and supports the automatic
execution of key spectrum management functions. A global
blockchain network (G-Chain) is used for spectrum regulatory
tasks while localized blockchain networks (L-Chains) are instan-
tiated in individual spectrum zones for automating spectrum
access assignment and other spectrum management activities.
To further achieve security against an adaptive adversary, BD-
SAS integrates a SAS server reshuffle scheme to resist adaptive
corruptions on individual SAS servers. We implemented a BD-
SAS prototype with practical blockchain platforms. Evaluation
results demonstrate the feasibility and responsiveness of our
system, wherein a spectrum access assignment can be finalized
at the level of seconds.

Index Terms—Radio spectrum management, dynamic spec-
trum access, distributed information systems, security, fault
tolerance

I. INTRODUCTION

SPECTRUM is the most important yet scarce resource for
wireless communication and sensing. Spectrum regulators,

such as the Federal Communications Commission (FCC) and
the National Telecommunications and Information Administra-
tion (NTIA) in the United States1, have opened up exclusively

A preliminary version of this work has appeared as Chapter 6 in Yang
Xiao’s Ph.D. dissertation [1].

Yang Xiao is with the Department of Computer Science, University of
Kentucky, Lexington, KY, USA (email: xiaoy@uky.edu).

Shanghao Shi and Wenjing Lou are with the Department of Computer
Science, Virginia Polytechnic Institute and State University, Blacksburg, VA,
USA (email: {shanghaos,wjlou}@vt.edu).

Chonggang Wang and Xu Li are with InterDigital, Princeton, NJ, USA
(email: {chonggang.wang,xu.li}@interdigital.com).

Ning Zhang is with the Department of Computer Science and Engi-
neering, Washington University in St. Louis, St. Louis, MO, USA (email:
zhang.ning@wustl.edu).

Y. Thomas Hou and Jeffrey H. Reed are with the Department of Electrical
and Computer Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA, USA (email: {thou,reedjh}@vt.edu).

1The FCC is an independent government agency that regulates the non-
Federal use of spectrum and is overseen by the US Congress [2]; the NTIA
manages the Federal use of spectrum and is responsible for advising the
President on telecommunications and information policy issues [3].

licensed bands (e.g., sub-GHz TVWS and 3.5 GHz CBRS) and
unlicensed bands (e.g., 6 GHz to mmWave) for civilian use on
a sharing basis. To protect the access rights of incumbent users
and ensure a fair dynamic spectrum sharing (DSS) process, the
FCC visioned a spectrum access system (SAS) in its rulings on
the 3.5GHz Citizens Broadband Radio Service (CBRS) band
[4]. Since then, the Wireless Innovation Forum (WInnForum)
has been leading the standardization effort on SAS for CBRS,
covering a variety of spectrum management functions from
incumbents protection and spectrum access assignment to co-
ordination between different SAS service providers. Among its
core tasks, a SAS service provider generates spectrum access
assignment in response to requests from its registered users [5]
and different SAS service providers also need to periodically
communicate with each other to synchronize service state in
common service regions [6], [7].

A. Motivation for Decentralized SAS

As the NTIA and FCC plan to open up or re-purpose more
spectrum for shared use, such as 3.4-3.55 GHz, 3.7-4.2 GHz
(C Band), 5.9 GHz (DSRC), and lower 37 GHz bands, the
regulators are soliciting comments and DSS solutions for these
bands [8]. The SAS model, which has seen initial success in
the CBRS band, poses a strong candidate for that purpose,
as the existing SAS service providers can conveniently ex-
tend their spectrum management service to the other bands.
However, the existing SAS model faces major challenges of
centralized trust and limited scalability.

First, it follows the centralized server-client paradigm and
assumes that spectrum users can place absolute trust in the
SAS service provider they have subscribed to. This assump-
tion, however, is questionable in the evolving DSS landscape
where there can be an increasing number of SAS service
providers servicing heterogeneous bands and users. There will
be an escalated risk that individual SAS service providers do
not operate faithfully or follow the exact spectrum allocation
rules. A malfunctioning or malicious SAS service provider
would bring devastating outcomes to its subscribed spectrum
users. Second, according to the WInnForum specifications [7],
SAS service providers periodically communicate with each
other to synchronize service states based on request-response.
The current inter-SAS synchronization process, called Co-
operative Periodic Activities among SASs (CPAS) [6], is
performed on a daily basis, contributing to a long wait (next
day) for spectrum usage. From the security perspective, it is

2

also defenseless against a malicious SAS service provider who
disseminates false or tampered records, which could bring
chaos to honest SAS service providers. Third, as we anticipate
more players to join the DSS ecosystem to either provide
or use SAS service, the server-client paradigm would bring
excessive regulatory overhead that could be undesirable to
the regulators. Meanwhile, the FCC has voiced support for
a market-driven approach to enabling more flexible and self-
managed spectrum sharing modes, including PA license leas-
ing, SAS-managed spectrum exchanges, secondary spectrum
markets, and other SAS value-added services [4], [9]. In all
cases, a new SAS paradigm that is secure by design, scalable,
and self-governed is highly sought-after.

Prospect of Decentralization. From the security perspec-
tive, spectrum users must be guaranteed reliable spectrum
management service even if individual SAS servers are not
trustworthy. From the performance perspective, there needs
an efficient inter-SAS coordination mechanism that allows
different SAS service providers to quickly synchronize service
states without involving a central mediator. In this regard,
we consider a decentralized and collectively managed SAS
paradigm desirable in that spectrum access assignments are
finalized via consensus by a group of SAS servers who can
synchronize their service states in a timely manner. Users and
SAS servers alike are encouraged to participate in the process
honestly to realize the high autonomy of spectrum man-
agement. The decentralized, self-governed paradigm provides
a natural ground for innovative value-added services while
minimizing regulatory overhead. For practical purposes, this
decentralized SAS model should be backward compatible with
the existing SAS in terms of participants and task model, and
also does not degrade SAS service quality, such as generating
spectrum assignment with low latency.

Blockchain as a Potential Solution. Blockchain emerged
as a secure-by-design technology for enabling decentralized
payment networks. Based on a cryptography-hardened trans-
actional model and consensus-based consistency mechanisms,
blockchain enables trustworthy transaction processing and
ledger keeping among mutually distrustful participants, even
if a certain portion of them may behave maliciously [10].
The decentralization, transparency, consensus-based security,
immutable ledger keeping, and support for the self-executing
smart contracts have made blockchain an ideal technology to
enable decentralized, automated spectrum management [11].
The FCC has indicated its interest in employing blockchain
and distributed ledger technology for future spectrum sharing
systems [12], [13]. Since then multiple blockchain-based SAS
solutions have been proposed [14]–[16]. Still, there lacks a
concrete solution in the literature on how to decentralize
the SAS amid malicious SAS servers while being backward
compatible with the existing SAS.

B. Our Contribution

To solve the challenges of service centralization and fault
tolerance, building upon our previous vision [17], [18], we
formulate a decentralized SAS model encompassing a par-
ticipation model and a task model. The participants, namely

regulators, SAS servers, local witnesses, and spectrum users,
get involved in four tasks—user management, spectrum access
assignment, record keeping, and regulation enforcement. We
identify three key requirements that arise with decentralization:
fault tolerance of all tasks when malicious SAS servers exist,
responsiveness of spectrum access assignment, and backward
compatibility with the existing SAS infrastructure which has
been implemented for CBRS.

BD-SAS. We formally introduce the Blockchain-based
Decentralized SAS architecture dubbed BD-SAS, extending
from our previous proof-of-concept design [18]. BD-SAS
consists of two layers of smart contract-enabled blockchains:
the G-Chain at the global scale for regulatory purposes and
inter-SAS information exchange, and L-Chains at local regions
for the actual spectrum access assignment. The G-Chain is
participated by regulators, SAS servers, and witnesses, who
maintain a unified record on spectrum regulations and digests
of local SAS service states by curating a carefully designed
G-Chain regulatory contract C𝑅. An L-Chain is dedicated
to spectrum access management for a specific geographical
region and participants include SAS servers who serve that
region and witnesses who represent stable local spectrum users
in that region. To enable automated spectrum assignment, a
carefully designed spectrum access contract denoted C𝑆𝐴 is
instantiated on the L-Chain and encodes the access request
function. The function is invoked by a spectrum user and
outputs an access assignment (or an inquiry response) indicat-
ing the allocated channels and conditions to use. Assignment
results are finalized in the L-Chain ledger and open for
auditing.

G-Chain is secure under the assumption that the majority
of SAS servers are honest globally. To defend against pow-
erful adversaries who can adaptively corrupt SAS servers to
compromise a target L-Chain, we design a security mechanism
called SAS server reshuffle to ensure that the SAS servers serv-
ing any L-Chain at any time are also majority-honest (i.e., THE
same threat threshold as with G-Chain) with overwhelming
probability. To minimize spectrum access assignment latency,
i.e., for the requirement on responsiveness, we design the
L-Chain workflow where the execution of spectrum access
requests is separated from the total ordering of them, which
are undertaken respectively by the SAS servers and witnesses.
This separation scheme is essential to the responsiveness of the
assignment process, as a user can start using the spectrum right
after the SAS servers execute its request before the execution
is finalized by local witnesses. And such response time is at
most linear in the number of those SAS servers.

In summary, we make the following contributions in this
paper:
• Visioning on the future spectrum sharing landscape, we

propose a decentralized SAS model that allows spectrum
users to access reliable SAS service without having to
trust an individual SAS server. This model contains
backward-compatible abstractions for system participants
and tasks, and key security and performance require-
ments.

• We introduce the BD-SAS architecture to realize the de-
centralized SAS model. BD-SAS is the first blockchain-

3

based SAS solution that achieves decentralization of SAS
service while being compatible with the existing SAS
infrastructure and supporting automatic execution of SAS
functions.

• Within BD-SAS, we design a cross-chain security mecha-
nism, called the SAS server reshuffle procedure, to defend
BD-SAS against an adaptive adversary who can exert
Byzantine influence on individual SAS servers. Moreover,
we leverage the separation of consensus and execution to
achieve higher efficiency in spectrum assignment.

• We implemented a BD-SAS prototype using the
Ethereum Rinkeby testnet (for emulating the G-Chain)
and Hyperledger Fabric [19] (for realizing an L-Chain).
Evaluation results demonstrate BD-SAS’s capability of
providing spectrum access assignment to users within
five seconds under our most constraining network delay
setting, showing BD-SAS’s feasibility amid the tight
timing regime of existing SAS operation.

Road map §II introduces the existing SAS model and
several blockchain-based SAS designs related to our work. §III
provides abstractions for SAS participants and tasks and main
requirements for the decentralized SAS model. §IV introduces
BD-SAS, a novel decentralized SAS solution along with its
setups and operations. §V analyzes the system’s security
and performance properties. §VI introduces our prototype
implementation. §VII evaluates the prototype’s performance.
§VIII discusses potential extensions to BD-SAS. Finally, §IX
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. The Existing Spectrum Access System

The SAS concept was coined by the FCC as a new DSS
paradigm to open up previously under-utilized spectrum while
protecting the rights of incumbent users. It was legalized in
the FCC’s 2015 ruling on the 3.5GHz CBRS band [4]. Based
on a three-tiered access model, the SAS is designated by
the FCC for managing the shared access to the CBRS band
while protecting the preemptive right of Incumbent Access
(IA) users and the licensed privilege of Priority Access (PA)
users. The General Authorized Access (GAA) users request
spectrum access from the SAS but do not receive presumed
interference protection.

Since 2016, the WInnForum has been leading the CBRS
standardization effort, including specifications on SAS-CBSD
interface [5] (CBSD stands for citizens broadband radio ser-
vice devices), inter-SAS communication [7], communication
security and PKI requirements [20], and rules for protecting
incumbent operations [21]. Each SAS server, which is propri-
etary to a commercial administrator, maintains a database on
the spectrum availability and receives CBSD registrations. The
spectrum assignment process follows a server-client model
and consists of three main request-response procedures—
“Inquiry”, “Access”, and “Heartbeat”. When a SAS server
receives an access request from a registered CBSD, it responds
with a “Grant” specifying the access assignment details, in-
cluding allocated channel range, expiration time, and Heartbeat
interval. Each CBSD with an active grant needs to send

periodic Heartbeat requests to the SAS server and receive
Heartbeat responses. Each Heartbeat response authorizes the
CBSD to commence RF transmission using the granted chan-
nels until a certain transmit expiration time. When the transmit
expiration time is reached without a new Heartbeat response
(grant will be suspended) or the grant gets terminated, the
CBSD should stop transmitting within 60 seconds [5]. To
maximize spectrum utilization, the Heartbeat interval can be as
tight as 30 seconds in commercial SAS implementations [22].
To facilitate coordination across different SAS servers, SAS
servers communicate with each other and synchronize service
states on a daily basis [6], [7]. This daily synchronization
procedure called the Cooperative Periodic Activities among
SASs (CPAS), requires all SAS servers to exchange full-
dump CBSD records so that they may generate substantially
similar allocations for the same CBSDs (i.e., in new Grants). It
however usually leads to a long wait for the grant approval—
except a small portion of the spectrum is reserved for same-
day approval with limited transmission power, most grants are
fully approved only after the next day’s CPAS procedure [23].

B. Blockchain for Spectrum Management

Prior wisdom has explored the prospective use of blockchain
technology for spectrum management. It is identified in
[11], [25] that the key features of blockchain technology,
namely decentralization, transparency, ledger immutability,
and consensus-based security, are appealing to both spectrum
users and regulators in the DSS scenarios. In particular, the
FCC has been eyeing on blockchain’s potential in enabling
novel spectrum sharing and trading applications with minimal
regulatory touch [9], [13]. Weiss et al. [11] provide a qualita-
tive analysis of the pros and cons of blockchain technologies
when applied to different spectrum-sharing modes according
to the authors’ previous typology [26]. Ariyarathna et al.
[14] propose a digital-token-based spectrum access platform
wherein a smart contract system is used by primary users
as a trusted third-party service for advertising and leasing
spectral tokens to secondary users. Grissa et al. [15] formulate
a hierarchical blockchain framework called TrustSAS to enable
privacy-preserving spectrum sharing among secondary users.
Local blockchain networks are established among secondary
users for spectrum query aggregation and response distribution
while a global blockchain is used for general records keeping.
Zhang et al. [16] propose a blockchain-enhanced spectrum
sharing system in the CBRS band where PA users establish
local blockchain ledgers that record spectrum usage rules for
local GAA users. Similarly, et al. [24] propose a blockchain-
assisted system aiming to improve the service for GAA users,
where the PA users run a consensus mechanism to generate
spectrum allocations for GAA users and use blockchain for
storage.

In the schemes mentioned above, either a third-party smart
contract platform [14], individual SAS servers [15], or a PA
consortium is assumed to process allocation requests from
users [16], [24]. The first two paradigms are still susceptible
to the security impact of single-point failures while the last
paradigm is not compatible with the currently deployed SAS

4

TABLE I
COMPARISON OF BLOCKCHAIN-BASED DYNAMIC SPECTRUM SHARING SCHEMES

Blockchain’s role in Who curate Fault-tolerant CBRS-SAS SAS server
Scheme spectrum sharing blockchain allocation compatibility coordination

Ariyarathna et al. [14] Rule/Record keeping Third party No No (N/A)
Grissa et al. [15] Record keeping GAA users No Yes No
Zhang et al. [16] Allocation, record keeping PA users Yes No (N/A)
Li et al. [24] Allocation, record keeping PA users Yes No (N/A)
BD-SAS (this work) Allocation, record keeping SAS servers Yes Yes Yes

where PA users are customers of spectrum allocation service
provided by SAS servers. As conceptualized in our previous
vision [17], we believe that a decentralized and backward-
compatible SAS model is highly desirable in that the security
and efficiency of spectrum allocation come from the honest
majority of SAS servers and the system can conveniently
coexist with the current SAS in CBRS. A comparison of
mentioned schemes and our scheme is shown in Table I.

III. SYSTEM MODEL

In this section, we describe the participants, main tasks, and
key requirements of a decentralized SAS model. Crucially,
the mode is designed to be compatible with the existing
CBRS-based SAS implementation while general enough to
accommodate other spectrum bands.

Geographical concepts. We first clarify the geographical
concepts of our model. The global scale refers to the entire
spectrum jurisdiction, such as the territory of the US. In
contrast, the local scale refers to a specific region. All regions
operate independently for local spectrum management while
being subject to global regulations. The region concept is
inclusive of CBRS “zone” which typically refers to a US
county [7] and a region may consist of one or more contiguous
CBRS zones.

A. Participants

We define four types of participants:

• Regulator is a government entity that publishes regula-
tions on spectrum usage in its jurisdiction. Examples of
regulators are the FCC and the NTIA in the US.

• SAS Server is a cloud server capable of providing
regulation-compliant spectrum allocation service to spec-
trum users in certain regions. Each SAS server is managed
by a SAS administrator, candidates of whom include the
current ones in CBRS (e.g., Google, Federated Wireless,
CommScope, Sony, Amdocs) and other potential cloud
service providers.

• Spectrum user operates a certified RF device and acts as
a local client to the SAS for spectrum access assignment.
Typical spectrum users include private LTE base stations,
5G access points, and campus hot spots.

• Witness is an entity that participates in local spectrum
management on behalf of its associated spectrum users.
Candidates of witnesses include operators and proxies (as
in CBRS) of spectrum users.

R Regulator

Users affiliating to a
witness

Standalone
user

S SAS server W Witness U User

T-4

T-3

T-1, T-2

Fig. 1. Task involvement of participants in the decentralized SAS model.
Dashed lines represent trust boundaries.

To ensure compatibility with both the existing and decen-
tralized models, we make three assumptions about the partic-
ipants. First, although multiple SAS servers can be managed
by one administrator, every SAS server should operate with a
unique identity when providing service to spectrum users. This
is in line with the current SAS implementation [7]. We further
require that for a specific region, at most one SAS server under
each SAS administrator can provide service to that region.
This is to enhance the fairness and fault tolerance of SAS
service at the local level, as we will provide a realization in
§IV-C. Second, a spectrum user can be either stand-alone or
associated with a witness; a witness must be backed by one
or more local spectrum users, as is shown in Figure 1. This
arrangement gives flexibility to existing spectrum users for
participating in local spectrum management, as an occasional
user (e.g., a small-scale GAA user in CBRS) may not want to
involve in SAS management other than being a pure client.
Third, we exclude federal incumbent users such as naval
radars and satellite ground stations from the spectrum user
category as they have preemptive access rights and do not need
the spectrum allocation service from the SAS. The signaling
mechanism of incumbent appearance, as provided by the
Environmental Sensing Capability (ESC) of the current SAS
framework [21], is modeled as trusted broadcast messages
coming from a regulator node.

B. Main Tasks
T-1. User registration. The system accepts registrations

from spectrum users. The registration process validates the

5

user-provided device information (including the device certifi-
cate, region, and RF capability) and creates a unique user ID
that will be used in later communications and tasks.

T-2. Access assignment. The system generates spectrum
access assignments (specifying location, channel range, expira-
tion time, etc.) per user request. The calculation of the assign-
ment follows a predefined interference model that consumes
the current state of spectrum sharing. The system also allows a
user to simply inquire about the real-time spectrum availability
(e.g., on location and channel range) before it decides on
operational parameters in its ensuing spectrum access request.

T-3. Record keeping. The system keeps an irreversible
record of spectrum access requests and assignments. In the
decentralized SAS model considered in this paper, this task
dictates that all SAS servers and witnesses who have partici-
pated in the access management for a specific spectrum region
should agree on a unified record for that region. This record
serves three purposes—for synchronizing SAS service states
(required by the existing SAS [7]), enabling regulatory audits,
and underpinning any compensation scheme.

T-4. Regulation enforcement. The system allows a regula-
tor to publish regulations on the above tasks. A regulation can
be either long-term or short-term. Long-term regulations in-
clude the addition of spectrum regions, designation of a univer-
sal interference model, publication of priority access licensees
(as in the CBRS case), etc. Short-term regulations include
notification of incumbent user appearance, addition/removal
of SAS servers, etc.

The task involvement for participants is shown in Figure
1. Importantly, regulators do not involve in the day-to-day
spectrum management business (T-1, T-2, T-3) while spectrum
users act as clients for T-1 and T-2.

C. Key Requirements for Decentralization

In the current SAS model, T-1 and T-2 have been standard-
ized as a server-client process [5] while T-3 and T-4 are trivial
due to the trust on individual SAS servers. In comparison,
the decentralized SAS model does not assume trust in any
individual participant except the regulators. Spectrum users do
not need to trust any individual SAS server, nor do SAS servers
or witnesses trust each other. Moreover, the performance
impact of decentralization should be kept in control. We
identify the following key requirements:

R-1. Fault tolerance. All four tasks should be executed
correctly given that a certain portion of SAS servers is faulty
or malicious (i.e., “Byzantine”). The detailed threat model is
given in §III-D. In specific, for any spectrum region, users
should get correct assignments (T-2) and SAS servers and
witnesses should keep a unified assignment record (T-3) as
long as fewer than half of SAS servers can be Byzantine.

R-2. Responsiveness. The generation of an actionable
access assignment per user request (T-2) should be swift, and
on par with the existing SAS’s server-client model. Here “ac-
tionable” means the assignment is complete and valid before
being written into the record. This implies that the assignment
latency should be less than linear in the number of SAS servers
involved in the assignment generation. Moreover, the system

TABLE II
LIST OF SYSTEM VARIABLES IN BD-SAS

Symbol Definition

C𝑅 The Regulatory Contract on the G-Chain.
C𝑆𝐴 Spectrum Access Contract on an L-Chain.
SG𝑖 Group of SAS servers serving the 𝑖𝑡ℎ L-Chain.
𝑁 Total number of SAS servers globally
𝐹 Maximum number of Byzantine SAS servers globally
𝑊𝑖 Size of the 𝑖𝑡ℎ L-Chain’s Witness group
𝑆𝑖 Size of SG𝑖 .
𝐵 G-Chain block interval in seconds
𝑇𝐸
𝑖

𝑖𝑡ℎ L-Chain’s epoch length in 𝐵.
𝑇𝑆
𝑖

𝑖𝑡ℎ L-Chain’s shift length in 𝐵.
𝑅𝑖 Number of epochs before a shift ends for the SAS

server reshuffle procedure to start at the 𝑖𝑡ℎ L-Chain.

should accommodate the increasing number of spectrum users
without significantly compromising responsiveness.

R-3. Backward compatibility. The system should be
compatible with the existing SAS infrastructure and coexist
with the server-client model when fulfilling T-1 and T-2. This
offers flexibility to SAS servers and spectrum users in their
day-to-day operation, as they can gradually transition into the
new decentralized model.

D. Threat Model

We assume individual SAS servers may suffer from Byzan-
tine fault, i.e., arbitrarily deviating from their normal routine,
due to server failure or adversarial corruption. The Byzantine
fault model is also considered in the prior art of blockchain-
based SAS [15] for modeling the decision-making of sec-
ondary users. Generally, the Byzantine model is inclusive of
all potential server faults and is considered the most severe
fault model in the literature of distributed computing [27] and
blockchain systems [10]. It includes the case that a SAS server
provides false or tampered information to peer SAS servers
or spectrum users. We call unaffected SAS servers “honest”.
The adversarial corruption can be also adaptive in that a SAS
server may act honestly at first and turn malicious at an
arbitrary point. In all cases, we assume the honest SAS servers
always take up more than 50% of SAS servers globally at any
time. We assume witnesses of a region are self-organized and
have the direct incentive to provide correct witness service to
our system’s local operation. To provide a reasonable design
scope in this paper, we consider that they can run a local
election process to choose the most reputable witnesses among
themselves. Lastly, we assume the regulators, such as the FCC
and NTIA in the US, are trusted.

IV. THE BD-SAS ARCHITECTURE

A. BD-SAS Overview

We introduce the blockchain-based decentralized SAS ar-
chitecture, dubbed BD-SAS, to realize the aforementioned
decentralized SAS model. BD-SAS consists of two layers of
blockchain networks: a Global Chain (G-Chain) and region-
specific Local Chains (L-Chains). We define curator as an en-
tity that participates in the blockchain consensus and maintains
a blockchain instance, and client as an entity that can create

6

an account and issue transactions but does not participate in
consensus. Following this definition, the G-Chain is a public
blockchain to which anyone can be a client; but only regulators
and SAS servers can be the curators, with the former in
charge of curator permission control. In comparison, the L-
Chain of any region 𝑗 is a fully permissioned blockchain,
with the local witnesses and a group of SAS servers (denoted
SG 𝑗) as curators, while local spectrum users act as clients.
SG 𝑗 is responsible for user management and spectrum access
assignment. Specially, we call the witnesses who founded the
L-Chain and assumed long-term managerial responsibility the
anchor witnesses, such as the PA users in CBRS. Anchor
witnesses also represent all other witnesses in the G-Chain.
Anticipating the presence of an adaptive adversarial who can
corrupt targeted SAS servers, SG 𝑗 needs to be periodically
re-selected through a random reshuffle mechanism.

The data structures of the G-Chain and one L-Chain are
shown in Figure 2. Both the G-Chain and L-Chain follow the
account-balance model as in Ethereum [28] and support on-
chain state machines that enable smart contract functionalities.
The G-Chain’s state contains the global account balances and
a regulatory contract C𝑅, which allows regulators to publish
spectrum regulations and create new L-Chain profiles (T-4).
C𝑅 also encodes a record-keeping function that enables SAS
servers to update local service states and to claim service
compensations (T-3) and a multiparty function realizing ran-
dom reassignment of SAS servers. We will later show that
the latter function is essential for our system in achieving
resilience against adaptive SAS server corruptions. The SAS
servers update the L-Chain state for every epoch, which spans
over 𝑇𝐸

𝑖
consecutive G-Chain blocks. Every epoch start of the

L-Chain is marked by a beacon block, whose header includes
an extra hash pointer to the most recent G-Chain block. The
SAS server group SG 𝑗 is randomly re-selected for every shift,
which spaces over 𝑇𝑆

𝑖
consecutive G-Chain block cycles. 𝑇𝐸

𝑖

and 𝑇𝑆
𝑖

are design parameters and fixed during the 𝑖𝑡ℎ L-
Chain’s bootstrapping, and 𝑇𝑆

𝑖
is a multiple of 𝑇𝐸

𝑖
. An L-

Chain’s state contains a spectrum access contract C𝑆𝐴 that
documents local witnesses, spectrum users, and assigned SAS
servers. C𝑆𝐴 also encodes the functions for user registration
(T-1) and spectrum access assignment (T-2). For every epoch,
the assigned SAS servers are responsible for conveying recent
regulations to the L-Chain at the epoch start (T-4) and updating
the local service state to the G-Chain at the epoch end (T-3).

Next, we focus on the practical design of G-Chain and L-
Chain and elaborate on how the four tasks are fulfilled.

B. G-Chain Operation

The G-Chain can build on existing blockchain implementa-
tions through two paradigms: (1) reusing an existing public
blockchain system such as Ethereum or its testnets or (2)
bootstrapping from a new consortium blockchain network.
The former paradigm builds on the reliability of the public
blockchain’s smart contract functionality, while the latter gives
freedom for choosing more efficient consensus protocols. We
adopt the first paradigm for prototyping (see §VII). At the
starting phase, regulators and an initial group of SAS servers

Hash pointer

Header

Block 𝑏

Transaction root

Transact.
List

State root

▪ G-Chain accounts
▪ Regulatory contract 𝒞𝑅

Header

Epoch Block

…

…

…

Block 𝑏+𝑇𝑖
𝐸

……

Transact.
List

…

…

The G-Chain
(curated by regulators and

SAS servers)

The 𝑖𝑡ℎ L-Chain

(curated by
witnesses of region 𝑖

and recently
reshuffled SAS

servers)

State

State

Header

Normal Block

Transact.
List

…

▪ Spectrum access contract 𝒞𝑆𝐴

…

Normal Block

……

State

(next epoch
block of the
𝑖𝑡ℎ L-Chain)

…

Fig. 2. Ledger structures of the G-Chain and one L-Chain (each region has
its own L-Chain) of BD-SAS.

start with a G-Chain block, where a regulator submits a G-
Chain transaction to create C𝑅. New SAS servers join the G-
Chain network by connecting to the URL endpoints of existing
regulators and SAS servers and passing TLS-based mutual
authentication based on an existing public key infrastructure
(PKI), which is conveniently provided in the existing SAS
ecosystem [7], [20]. SAS servers can synchronize to the G-
Chain ledger and interact with C𝑅 after passing the mutual
authentication procedure with a regulator.

Encoding C𝑅. The pseudocode of C𝑅 is shown in Algo-
rithm 1. Its public variables include the profiles of regulators,
SAS servers, and L-Chains, as well as interference model
parameters and an incidence list for incumbent appearances.
A regulator can update the above public variables by sending
a transaction invoking the Publish function, which fulfills
the regulation publication part of T-4. The ReshufflePropose
and ReshuffleConfirm functions are parts of the SAS server
reshuffle procedure as we elaborate in §IV-C.

Local Update Procedure. When concluding an epoch, the
SAS servers in SG𝑖 need to update their local service state
onto the G-Chain, fulfilling the global part of T-3. To do so,
they use a simple round-robin mechanism across epochs—the
𝑆 𝑗 SAS servers take turns to call the LocalUpdate function
of C𝑅 for every new epoch. The function updates the epoch,
L-Chain state root 𝑠𝑟𝑜𝑜𝑡. Every anchor witness of L-Chain
𝑗 checks the new updated 𝑠𝑟𝑜𝑜𝑡 with their local version and
calls LocalUpdate to provide its approval signature.

All G-Chain participants can send tokens to each other
through transactions, akin to cryptocurrency payment. The
anchor witnesses and SAS servers of an L-Chain can also use
the local update procedure to claim compensation for their
L-Chain spectrum access assignment service (not shown in
Algorithm 1). In this paper, we consider the compensation
scheme an important but standalone task to be addressed in a
separate work.

C. SAS Server Reshuffle Procedure

We require the SAS server group SG 𝑗 for each L-Chain
𝑗 to be randomly replaced for every shift (i.e., 𝑇𝑆

𝑗
G-chain

7

Algorithm 1: Regulatory Contract C𝑅 Pseudocode
(essential functions only)

1 var Regulators[], Servers[]
2 var LC[] .{𝑑𝑒𝑠𝑐,Witnesses[], 𝑆𝐺 [], 𝑠ℎ𝑖 𝑓 𝑡, 𝑒𝑝𝑜𝑐ℎ, 𝑠𝑟𝑜𝑜𝑡}

//L-Chains profiles

3 var iModel.{𝑝𝑎𝑟𝑎𝑚1, 𝑝𝑎𝑟𝑎𝑚2, ...} //Interference model

4 var Incidents.{𝑉𝑎𝑐𝑎𝑡𝑒𝑂𝑟𝑑𝑒𝑟𝑠[], ...}
5 var Lottery[] [] .{ℎ𝑎𝑠ℎ, 𝑝𝑟𝑜𝑜 𝑓 , 𝑠ℎ𝑖 𝑓 𝑡, 𝑠𝑡𝑎𝑡𝑢𝑠}
6 Function Init() //Contract creation by a regulator

7 Initialize Regulators,Servers, iModel

8 Function Publish(regulation) //S represents the function

caller

9 if S ∈ Regulators then
10 Update Servers[], LC[], iModel, or Incidents per

regulation

11 Function ReshufflePropose(𝑗 , ℎ𝑎𝑠ℎ, 𝑝𝑟𝑜𝑜 𝑓) // 𝑗 is the

target L-Chain index

12 if S ∈ Servers and
(𝑠𝑦𝑠𝑡𝑒𝑚.𝑏𝑙𝑜𝑐𝑘 − LC[𝑗] .𝑠ℎ𝑖 𝑓 𝑡) ∈ [0, 𝑇𝑆

𝑗
− 𝑇𝐸

𝑗
) and

Lottery[𝑗] [S] .𝑠ℎ𝑖 𝑓 𝑡 ≤ LC[𝑗] .𝑠ℎ𝑖 𝑓 𝑡 then
13 Lottery[𝑗] [S] .{ℎ𝑎𝑠ℎ, 𝑝𝑟𝑜𝑜 𝑓 , 𝑠ℎ𝑖 𝑓 𝑡} ←

{ℎ𝑎𝑠ℎ, 𝑝𝑟𝑜𝑜 𝑓 , LC[𝑗] .𝑠ℎ𝑖 𝑓 𝑡 + 𝑇𝑆
𝑗
}

14 Function ReshuffleConfirm(𝑗 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 []) //Invoked by

L-Chain 𝑗’s witnesses

15 if S ∈ LC[𝑗] .Witnesses and
(𝑠𝑦𝑠𝑡𝑒𝑚.𝑏𝑙𝑜𝑐𝑘 − LC[𝑗] .shift) ∈ [𝑇𝑆

𝑗
− 𝑇𝐸

𝑗
, 𝑇𝑆

𝑗
) then

16 if the majority of LC[𝑗] .Witnesses confirm
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 [] then

17 LC[𝑗] .𝑆𝐺 [] ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 []
18 LC[𝑗] .𝑠ℎ𝑖 𝑓 𝑡 ← LC[𝑗] .𝑠ℎ𝑖 𝑓 𝑡 + 𝑇𝑆

𝑗

19 Function LocalUpdate(𝑗 , 𝑒𝑝𝑜𝑐ℎ, 𝑠𝑟𝑜𝑜𝑡) //Invoked by

L-Chain 𝑗’s SAS server group

20 if S ∈ LC[𝑗] .𝑆𝐺 and
𝑒𝑝𝑜𝑐ℎ ∈ [𝐿𝐶 [𝑗] .𝑒𝑝𝑜𝑐ℎ, 𝑠𝑦𝑠𝑡𝑒𝑚.𝑏𝑙𝑜𝑐𝑘] then

21 if the majority of LC[𝑗] .𝑆𝐺 provide the same
LC[𝑗] .{𝑒𝑝𝑜𝑐ℎ, 𝑠𝑟𝑜𝑜𝑡} then

22 LC[𝑗] .{𝑒𝑝𝑜𝑐ℎ, 𝑠𝑟𝑜𝑜𝑡} ← {𝑒, 𝑠𝑟𝑜𝑜𝑡}

blocks). This is crucial to our system’s resilience against
adaptive corruptions on SAS servers at the local level, and to
avoid the case that SAS servers of one L-Chain belong to the
same SAS administrator. This procedure takes advantage of
the cryptographic primitive verifiable random function (VRF).

VRF was first introduced by Micali et al. [29] in 1999
for providing both unpredictability and verifiability of pseudo-
random functions. It allows a function caller 𝑖 to generate a
random ℎ𝑎𝑠ℎ and a proof 𝜋 with its private key 𝑠𝑘𝑖 . The
proof 𝜋 allows others to verify the validity of the hash using
the caller’s public key 𝑝𝑘𝑖 . The randomness of ℎ𝑎𝑠ℎ means
it looks uniformly distributed to others without knowing 𝜋.
Specifically, VRF generation and verification are as follows:
• ⟨ℎ𝑎𝑠ℎ, 𝜋⟩ ← VRF𝑠𝑘𝑖 (𝑟𝑜𝑙𝑒 | |𝑠𝑒𝑒𝑑)
• 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛← VerifyVRF𝑝𝑘𝑖

(𝑟𝑜𝑙𝑒 | |𝑠𝑒𝑒𝑑, ℎ𝑎𝑠ℎ, 𝜋)
wherein 𝑟𝑜𝑙𝑒 is a descriptor, such as ‘sas server #𝑖’, and 𝑠𝑒𝑒𝑑

is a public random seed known to the system. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is a
binary value taking TRUE or FALSE.

VRF-based SAS Server Reshuffling. Back to our system,

SAS servers participate in the reshuffle procedure individually.
If SAS server 𝑖 is interested in joining SG 𝑗 (i.e., serving L-
Chain 𝑗) for the next shift, at the start of the 𝑅𝑡ℎ

𝑗
last epoch

of the current shift, SAS server 𝑖 needs to do the following:
• Generate a ℎ𝑎𝑠ℎ𝑖 and a proof 𝜋𝑖 by executing

⟨ℎ𝑎𝑠ℎ𝑖 , 𝜋𝑖⟩ ← VRF𝑠𝑘𝑖 (‘sas server 𝑖’| |𝑠𝑟𝑜𝑜𝑡) (1)

where 𝑠𝑟𝑜𝑜𝑡 is the L-Chain 𝑗’s state root of the last shift;
• Submit ℎ𝑎𝑠ℎ𝑖 and 𝜋𝑖 to G-Chain by calling C𝑅’s Server-

Reshuffle function which updates the Lottery[𝑗] [𝑖] vari-
able.

When the last epoch starts, each of L-Chain 𝑗’s an-
chor witnesses collects the available hash-proof pairs from
𝐿𝑜𝑡𝑡𝑒𝑟𝑦[𝑗] [·] from C𝑅 and performs the following steps:
• Sort the hash-proof pairs by hash value in ascending

order;
• Along this order, for every hash-proof pair ⟨𝜋𝑖 , ℎ𝑎𝑠ℎ𝑖⟩

(denote SAS server 𝑖 the generator), verify it by perform-
ing

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛← VerifyVRF𝑝𝑘𝑖
(‘𝑠𝑎𝑠 𝑠𝑒𝑟𝑣𝑒𝑟 ′ | |𝑠𝑟𝑜𝑜𝑡, ℎ𝑎𝑠ℎ𝑖 , 𝜋𝑖)

(2)
(Server 𝑖 does not share the same administrator with
anyone in 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 [])

• If 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TRUE, add 𝑖 to 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 []; then continue
the last step for the next hash-proof pair in the order;

• Terminate when 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 [] has 𝑆 𝑗 entries, and submit
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 [] to C𝑅 by calling ReshuffleConfirm.

Lastly, ReshuffleConfirm updates SG 𝑗 in C𝑅 only when
the majority witnesses of L-Chain 𝑗 also sign for the same
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 []. A newly updated SAS server 𝑖 for L-Chain 𝑗

will need to connect to the anchor witnesses through TLS
communication before the start of the new shift, under the
PKI established by the regulator (as is in CBRS [20]).

D. L-Chain Operation

L-Chain is a special-purpose permissioned blockchain
where the SAS servers and witnesses have different responsi-
bilities in the ledger curating process, with the former provid-
ing transaction execution service (thus enforcing state changes
from the last block) while the latter providing transaction or-
dering service (thus finalizing new blocks). Both SAS servers
and witnesses maintain the L-Chain ledger. At the boot-
strapping phase, the genesis block is established among the
initial anchor witnesses and SAS servers, which are regulator-
certified entities and published in C𝑅. The genesis block serves
the L-Chain’s first beacon block with a hash pointer to the
most recent G-Chain block. The genesis block also comes
with an initial C𝑆𝐴 setup, specifying the region information
and initial anchor witnesses. For the CBRS band and others
that have priority licensees, the initial anchor witnesses can
be conveniently undertaken by the priority licensees. Since
L-Chain is permission-controlled, a new witness must first
operate a valid spectrum user (or the proxy for a group of
users) and pass the user registration process.

Separation of Execution and Consensus. We adopt a
separation paradigm for L-Chain transaction execution and

8

SAS Servers
...

Witnesses
...

Commit Block

Execute

Ordering and
Block Generation

Client
(User/Witness/SAS Server)

Transaction
Proposal

Ordered
Transactions
in a Block

Transaction

Endorsements

Validate

For every
L-Chain
block
cycle

Procedure
finishes here if
txType=Inquiry

Gather
Endorsements

Fig. 3. L-Chain workflow built on Hyperledger Fabric’s execute-order-validate
model [19].

consensus making, where SAS servers and witnesses under-
take transaction execution and transaction serialization re-
spectively. The separation concept was originally proposed
in [30] to reduce server redundancy and increase modular-
ity in state machine replication systems and later adapted
to permissioned blockchain frameworks such as Tendermint
and Hyperledger Fabric [19] for efficiency and modularity
purposes. It is in contrast to traditional blockchain consensus
that relies on an atomic consensus module, such as Ethereum,
where transaction ordering and execution are performed in
one operation. While both paradigms can realize a blockchain
state machine and smart contracts and yield similar throughput
performance, the separation paradigm supports the client-in-
the-loop endorsement mechanism which provides better ar-
chitectural modularity, flexibility, and low latency in obtaining
service. To realize this design, we use Hyperledger Fabric [19]
to implement L-Chain and one L-Chain transaction workflow
is shown in Fig. 3. A client, e.g., a spectrum user, sends
out a transaction proposal containing input to an L-Chain
contract. The SAS servers execute the contracts and return
the outputs and state changes as endorsements. The client
needs to collect more than half of the endorsements before
sending out the real transaction for block generation. After the
witnesses generate a block containing serialized transactions,
they broadcast the block to SAS servers who will validate
the block proof and all other endorsements before committing
the block. The witnesses are only responsible for the block
generation (i.e., transaction ordering) and keep records of the
blocks sent to SAS servers.

From the deployment perspective, this separation paradigm
is key to the system’s responsiveness in processing spec-
trum access requests (R-2) as it capitalizes on the physical
differences between SAS servers and local witnesses. First,
SAS servers have presumably sufficient computing capability

for executing transactions. Meanwhile, local witnesses are
not necessarily powerful computers, as they represent diverse
types of spectrum users. Second, local witnesses tend to phys-
ically reside in the region where their associated users access
the spectrum. Their close proximity yields low communication
delays, which enables the usage of deterministic consensus
schemes such as Raft [31] or efficient BFT protocols [32],
[33] for the ordering task. In comparison, we do not assume
any locality of SAS servers and they may reside in a cloud
cluster across the country.

Encoding C𝑆𝐴. The spectrum access contract C𝑆𝐴 profiles
local spectrum participants (i.e., witnesses and users) and en-
ables SAS servers to provide consistent spectrum management
service. C𝑆𝐴 pseudocode is shown in Algorithm 2. At the start
of a shift, everyone in the newly selected SAS server group SG
calls the ShiftUpdate function indicating its incoming service,
which needs approvals from the majority of witnesses. At each
epoch onset, SG fetches the latest regulatory information from
C𝑅, including updates of interference model parameters and
anchor change confirmation in case an anchor witness was
changed by the regulator. Adding new or removing existing
witnesses requires the majority of existing witnesses to invoke
the WitnessUpdate function. Next, we provide details C𝑆𝐴 to
fulfill two essential spectrum management tasks.

User Management (T-1). For a new spectrum user to
register with the L-Chain, it needs to pass the off-line device
registration procedure (e.g., the CBSD registration protocol
[5]) with each connected SAS server. After which the servers
add this user by calling UserUpdate with a majority vote. User
removal also is accomplished through UserUpdate, via either
the user’s own action or the majority of SG.

Access Assignment (T-2). A spectrum user submits its
spectrum access request by invoking the Request function
along with operational parameters, including the requested
zone, channel range, and effective isotropic radiated power
(EIRP). This function encodes a channel assignment algo-
rithm that calculates a decision based on the existing user’s
device parameter, operational parameters, as well as current
channel availability, through a predefined interference model
(i.e., iModel in Algorithm 2). For this iModel and later
implementation, we adopt a simple first-come-first-serve al-
location criterion, where the assignment is approved if the
requested channel range at the request zone is available and the
user’s EIRP would not cause harmful interference to users of
neighboring zones. More complex channel allocation schemes
exist in the literature, as we discuss in §VIII. Besides the
Access request type, there also exist Inquiry and Heartbeat
request types, which enable spectrum users to perform simple
inquiries on readily available channels and provide periodic
proofs of liveness (per the existing SAS in CBRS) respectively.
Our implementation in §VII also included all three types of
requests to demonstrate this backward compatibility.

Performance Features. In terms of L-Chain performance,
as long as the user’s requests are less frequent than L-Chain’s
block frequency, the response can be finalized by Ω(1) scale
of the L-Chain block interval. In the implementation, we set
L-Chain’s block interval to one second, while in the current
SAS implementation, the tightest response timing requirement

9

Algorithm 2: Spectrum Access Contract C𝑆𝐴 Pseu-
docode (essential functions only)

1 var Zones[] .{𝑖𝑑, 𝑑𝑒𝑠𝑐, 𝑙𝑖𝑐𝑒𝑛𝑠𝑒𝑒𝑠} //Zone coverage of

this local region

2 var ZCH[] [] .{𝑧𝑜𝑛𝑒, 𝑠𝑡𝑎𝑡𝑢𝑠} //Readily available

zone-channel pairs

3 var iModel.{𝑠𝑐ℎ𝑒𝑚𝑎, 𝑝𝑎𝑟𝑎1, 𝑝𝑎𝑟𝑎2, ...} //Interference
model

4 var Witnesses[] .{𝑡𝑦𝑝𝑒} //𝑡 𝑦 𝑝𝑒 is ANCHOR or NORMAL

5 var SG[] //SAS server group for this L-Chain

6 var Users[] .{𝑡𝑖𝑒𝑟, 𝑜𝑝𝑃𝑎𝑟𝑎𝑚} //Users profile

7 var A[] .{𝑑𝑒𝑠𝑐, 𝑧𝑜𝑛𝑒, 𝑐ℎ𝑠,ERP, 𝑠𝑡𝑎𝑡𝑢𝑠} //Access
assignment, indexed by user id

8 Function IntfModel(𝑧, 𝑐, EIRP) //Internal function

9 Checks if EIRP is high enough to cause harmful
interference to neighboring zones of 𝑧 on channel 𝑐,
using parameters specified in iModel. If yes, return
FAIL; otherwise textbfreturn SUCCESS;

10 Function Init() //Contract creation (omitted for

brevity)

11 Function EpochUpdate() //Allows servers to update

variables by voting (omitted for brevity)

12 Function ShiftUpdate() //Witnesses accept new SAS

servers by voting (omitted for brevity)

13 Function WitnessUpdate(𝑡 𝑝, 𝑢𝑠𝑒𝑟𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑝)//Update by

voting (omitted for brevity)

14 Function UserUpdate(𝑢, 𝑑𝑒𝑠𝑐, 𝑜𝑝𝑃𝑎𝑟𝑎, 𝑎𝑐𝑡𝑖𝑜𝑛) //S:
function caller

15 if S ∈ SG and 𝑎𝑐𝑡𝑖𝑜𝑛 = ADD then
16 Add User[S] .{𝑑𝑒𝑠𝑐, 𝑝𝑎𝑟} if the function is called

by the majority SG
17 if 𝑎𝑐𝑡𝑖𝑜𝑛 = REMOVE then
18 Remove Users[𝑢] if 𝑢 = S or the function is called

by the majority SG

19 Function Request(𝑑𝑒𝑠𝑐, 𝑡𝑦𝑝𝑒, 𝑧𝑜𝑛𝑒, 𝑐ℎ𝑠, EIRP) //𝑡 𝑦 𝑝𝑒:

Inquiry/Access/Heartbeat

20 if S ∈ Users and 𝑡𝑦𝑝𝑒 = 𝐼𝑛𝑞𝑢𝑖𝑟𝑦 then
21 return ZCH[𝑧] [𝑐] .𝑠𝑡𝑎𝑡𝑢𝑠 for all 𝑐 ∈ 𝑐ℎ𝑠
22 if S ∈ Users and 𝑡𝑦𝑝𝑒 = 𝐴𝑐𝑐𝑒𝑠𝑠 then
23 if ∃𝑐 ∈ 𝑐ℎ𝑠 that ZCH[𝑧𝑜𝑛𝑒] [𝑐] = OCCUPIED or

IntfModel(𝑧𝑜𝑛𝑒,𝑐,EIRP)=FAIL then
24 return FAIL
25 else
26 A[S] .{𝑑𝑒𝑠𝑐, 𝑧𝑜𝑛𝑒, 𝑐ℎ𝑠,EIRP, 𝑠𝑡𝑎𝑡𝑢𝑠} ←

{𝑑𝑒𝑠𝑐, 𝑧𝑜𝑛𝑒, 𝑐ℎ𝑠,EIRP, ASSIGNED}
27 ZCH[𝑧𝑜𝑛𝑒] [𝑐ℎ𝑠] ← OCCUPIED

28 if S ∈ Users and 𝑡𝑦𝑝𝑒 = 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡 then
29 A[S] .{𝑑𝑒𝑠𝑐, 𝑠𝑡𝑎𝑡𝑢𝑠} ← {𝑑𝑒𝑠𝑐, AUTHORIZED}

(a.k.a. response to Heatbeat) should be done within 60 seconds
[5], [22]. we require all transactions be finalized in 5 blocks
or otherwise fail. On the other hand, if a spectrum user has a
high level of trust in the availability of its local witnesses, they
can start using the allocating channels right after receiving the
majority of SAS server endorsements, just like receiving an
Inquiry response.

V. ANALYSES

Next, we analyze the security and performance properties
of BD-SAS under the aforementioned threat model (§III-D).

We assume there are 𝑁 SAS servers globally, 𝐹 of which are
potentially Byzantine. Every L-Chain’s SAS server group size
is fixed to 𝑆 and witness population 𝑊 .

Proposition 1 (Fault tolerance). As long as 𝑁 > 2𝐹 (i.e.,
the honest majority), G-Chain operations are safe against
Byzantine SAS servers. The same fault tolerance also applies
to L-Chain except for exponentially diminishing probability as
𝑆 increases.

Proof: The G-Chain’s tolerance against Byzantine SAS
servers follows from the underlying blockchain consensus
which is secure under the honest majority assumption. L-
Chain’s tolerance derives from the verifiable randomness of
the SAS server reshuffle procedure (§IV-C) executed for every
shift. The chance that the majority of the 𝑆 SAS servers are
Byzantine is (𝐹

𝑁
) ⌈𝑆/2⌉ , which diminishes exponentially as 𝑆

increases since 𝑁 > 2𝐹. □

Remark 1. The liveness aspect of L-Chain security, i.e., all
valid L-Chain transactions should be eventually finalized in
the ledger, depends on the availability of the local witnesses
and the consensus protocol they run for the ordering task.
We consider it a standalone challenge as the witnesses can
internally manage their own trust levels and choice of con-
sensus protocol as long as there is an honest majority. In
the implementation, we stick to Fabric’s Raft consensus for
prototyping.

Proposition 2 (Adaptive corruption resilience). Both G-Chain
and L-Chain operations are resilient to an adaptive adversary
who can corrupt any SAS server in the time scale of shifts.

Proof: The G-Chain’s resilience against adaptive corrup-
tions on SAS servers follows as long as the honest majority
assumption holds at all times. Meanwhile, L-Chain’s adaptive
corruption resilience is ensured by the timing regime of the
SAS server reshuffle procedure (§IV-C). That is, SAS servers
call the ReshufflePropose function only at the start of the 𝑅-
th last G-Chain blocks of before the current shift ends. The
adversary has no additional information (i.e., no different than
random guessing) on whether a SAS server will be chosen by
an L-Chain. Similarly, the adversary’s successful corruption
on certain SAS servers for the current shift does not last into
the next shift. □

Proposition 3 (Responsiveness). Given that SAS servers have
stable connections to spectrum users and each spectrum user
submits spectrum requests (i.e., inquiry, access, or heartbeat)
less frequently than the L-Chain block’s maximum transaction
throughput, the spectrum user can get an access assignment
(or an inquiry/heartbeat response) within the time scale of
Ω(1) seconds (i.e., irrespective of SAS server group size 𝑆).

Proof: This follows from L-Chain’s separation paradigm
as is shown in Fig. 3. A user is ready to propose a formal
transaction when its transaction proposal collected endorse-
ments from the majority of the 𝑆 SAS servers, within 𝑂 (𝑆)
TLS communication sessions. In our Hyperledger Fabric-
based L-Chain, each of such communication sessions follows
the server-client model and they can be performed in parallel

10

by a user. Assuming a stable connection between SAS servers
and the user, the total delay for a user to gather the majority
of endorsements is thus capped by the maximum endorsement
delay from SAS servers, not the sum of all delays. This means
that the time needed for the user to generate a formal L-Chain
transaction is irrespective of 𝑆. Meanwhile, an assignment is
not finalized until passing the ordering and block generation
phase which is handled by the witnesses. The finalization can
be done by the next L-Chain block cycle as long as users’
requests do not overwhelm the L-Chain block’s maximum
transaction throughput, which is determined by the witness
group’s internal communication and processing power. □

VI. IMPLEMENTATION

We used the Ethereum Rinkeby testnet [34] to emulate the
G-Chain (i.e., a public blockchain) and the Hyperledger Fabric
platform to implement the L-Chain prototypes.2 The reason
for choosing Rinkeby to emulate G-Chain is two-fold. First, it
offers a complete smart contract tool set (identically to that in
the Ethereum main blockchain). Second, it has a static 𝐵 = 15𝑠
block interval which can act as a stable timing source for BD-
SAS’s epoch and shift changes. We implemented the G-Chain
regulatory contract C𝑅 in Solidity with 202 lines of code.3

Our L-Chain implementations consisted of {3, 5, 7, 9} SAS
servers, each with fixed 5 witnesses, all of which were
instantiated in docker containers in a Linux testbed on top
of an AWS T2.xlarge machine. The L-Chain block interval
was fixed to 1 second and every block could enclose up 1MB
of transactions. Fabric’s native Raft consensus (a crash-fault-
tolerant protocol) was used for the witnesses’ ordering task.
The epoch time 𝑇𝐸 took value from {1, 2, ..., 10} (in 𝐵),
and the shift time 𝑇𝑆 was fixed to 1000 (in 𝐵), where the
L-Chain index is left out for convenience. We implemented
the spectrum access contract C𝑆𝐴 in Golang with 234 lines
of code. C𝑆𝐴 is designed to enable three types of spectrum
access operations: Access—which returns a channel assign-
ment, Inquiry—which returns the information of a readily
available channel-location, and Heartbeat—which is called
periodically by a spectrum user to demonstrate liveness and
returns an authorization for continuing channel usage. It is
noted that our C𝑆𝐴 implementation adopts a straightforward
first-come-first-serve (FCFS) channel allocation model and
does not consider multi-user interference coordination when
calculating an assignment, which would need an optimization-
based allocation technique. We will explore this option in
future work.

Lastly, for the SAS server reshuffle procedure, we used the
VRF implementation of [35] which is based on the elliptic
curve signature system ed25519 with 32-byte private/public
keys, 64-byte hashes, and 80-byte proofs.

VII. EVALUATION

A. G-Chain Performance and Feasibility
We evaluated the feasibility of Rinkeby as G-Chain by

testing its response latency for fulfilling two key G-Chain oper-

2The source code is available at https://github.com/yang-sec/bdsas
3The deployed contract is viewable at https://rinkeby.etherscan.io/address/

0xDBd97d9d6e61dB19e3Dd0eAfcaF132507BEC1098.

0 20 40 60 80 100 120 140
Number of SAS Servers (N)

0

20

40

60

80

100

120

140

Fin
al

iza
tio

n
La

te
nc

y
(s

) min/avg/max
std

(a) Calling ReshufflePropose (squeeze)

0 2 4 6 8 10
Epoch length (TE G-Chain blocks)

0

20

40

60

80

Fin
al

iza
tio

n
La

te
nc

y
(s

)

Epoch time
min/avg/max
std

(b) Calling LocalUpdate (regular)

Fig. 4. Stress test transaction finalization latency of Ethereum Rinkeby
testnet (as G-Chain). (a) A once-a-shift squeeze scenario where all 𝑁 SAS
servers call C𝑅’s ReshufflePropose simultaneously. (b) The regular operation
scenario where 𝑁 (=100) SAS servers (representing 5 L-Chains) call C𝑅’s
LocalUpdate intermittently across an epoch.

ations: reshuffle and local update. The first operation involves
𝑁 SAS servers calling the ReshufflePropose function of C𝑅
simultaneously, simulating a squeeze situation that stress-tests
the G-Chain, which in practice will also provide the highest
security against adaptive attacks since the VFR results are ex-
posed with minimal time. For each experiment (corresponding
to one bar in Figure 4(a)), we measured the minimum, average,
and maximum transaction finalization latency, as well as the
standard deviation for all the 𝑁 simultaneous ReshufflePropose
calls. It is observed from Figure 4(a) that the average final-
ization latency of ReshufflePropose calls generally increases
linearly with 𝑁 . This indicates that we would need to increase
the epoch length given the larger 𝑁 , for having the reshuffle
procedure finished in one epoch. For example, if 𝑁 = 140,
we would need to set a minimum epoch time of 10 G-
Chain block cycles (i.e., 150s). The second operation involves
𝑁 = 100 SAS servers, representing 20 L-Chains, calling the
LocalUpdate function C𝑅 periodically but at different instants,
simulating an uncongested and orderly situation. For each
experiment (corresponding to one bar in Figure 4(b)), we

https://github.com/yang-sec/bdsas
https://rinkeby.etherscan.io/address/0xDBd97d9d6e61dB19e3Dd0eAfcaF132507BEC1098
https://rinkeby.etherscan.io/address/0xDBd97d9d6e61dB19e3Dd0eAfcaF132507BEC1098

11

TABLE III
ROUND TRIP TIMES (IN MILLISECONDS) AMONG REAL CLOUD NODES AND THE NODE RESEMBLANCE TO L-CHAIN ENTITIES.

Node Location L-Chain Resemblance 1 2 3 4 5 6 7
1 AWS (N.Virginia) Local Witnesses - - - - - - -
2 Lab (N.Virginia) Local Users 2.4 - - - - - -
3 AWS (Ohio) SAS Server 1 11.8 12.0 - - - - -
4 AWS (California) SAS Server 2 62.0 82.3 50.1 - - - -
5 AWS (Oregon) SAS Server 3 66.9 71.3 49.5 21.8 - - -
6 Google (Nevada) SAS Server 4 62.2 73.5 62.2 18.6 40.3 - -
7 Google (Utah) SAS Server 5 52.8 66.6 52.9 20.8 41.1 20.0 -

measured the minimum, average, and maximum transaction
finalization latency as well as the standard deviation for all
100 LocalUpdate calls. It is observed from Figure 4(b) that
longer epochs generally lead to finalization latency (due to less
congestion) and only when 𝑇𝐸 ≥ 4 (i.e., 60 seconds) can the
G-Chain ensure every update is confirmed within one epoch.

For the SAS server reshuffle procedure, we benchmarked
the VRF operations on a Linux machine with 16GB memory
and a 3.0GHz CPU. It took 537ms to generate the VRF hash
and proof, and 441ms to verify them. We can see that these
off-chain delays added to the reshuffle procedure are negligible
compared to the time cost of their on-chain part.

We remark that in practical implementation, we can opt for
establishing a brand new G-Chain for BD-SAS for exclusive
use (i.e., instead of using a public blockchain platform). The
permissioned G-Chain would provide more stable latency
performance and low congestion since it does not need to
accommodate non-BD-SAS traffic. We will consider such
implementation in the future instantiation of BD-SAS.

B. L-Chain Performance

Next, we evaluate the performance of our L-Chain proto-
types with respect to two metrics: the finalization latency of a
spectrum request and the throughput capacity for the L-Chain
to handle a certain volume of such requests. In particular,
we evaluated all three types of requests: Inquiry, Access,
and Heartbeat. The tests on processing Inquiry and Access
requests were configured with a fixed invocation frequency
of 20 transactions per second (TPS). The tests on Heartbeat
requests were configured with varying invocation frequencies
from 20 TPS to the maximum stable throughput (i.e., all
transactions result in success). This emulates the practical
case that the Heartbeat requests would be much more fre-
quent, potentially than the other two. We used Hyperledger
Caliper [36], a blockchain benchmarking tool, to simulate the
abovementioned transaction traffic which invokes the Request
function with the corresponding request type. Moreover, to
simulate network delays in the Internet, we used three delay
regimes for L-Chain participants:
• 𝑟𝑒𝑎𝑙: the end-to-end packet delay statistics measured

among commercial cloud servers across the US. This
delay regime was only used on the L-Chain with 5 SAS
servers. The measurement and L-Chain node resemblance
are shown in Table III.

• 50𝑚𝑠 or 100𝑚𝑠: the synthetic end-to-end packet delay
added uniformly to every pair of L-Chain participants.

These two delay regimes were used on the L-Chain with
𝑆 ∈ {3, 5, 7, 9} SAS servers.

We first evaluated the performance of one L-Chain with 5
SAS servers under all three delay regimes, as is shown in
Figure 5. Figure 5(a) shows the finalization latency of three
types of requests with the request frequency fixed at 20 TPS.
For each experiment (one bar in Figure 5(a)), we measured the
average, minimum, and maximum finalization latency for all
transactions processed by the L-Chain during a 100-second
run (i.e., 2000 transactions in total). We observe that even
under the harshest 100𝑚𝑠 delay regime, the system is able to
finalize an Inquiry request, an Access request, or a Heartbeat
request within 0.5s, 5s, or 3s respectively. The higher latency
variation in finalizing the Access request was likely caused
by the varying size of channel-location availability slots in
our C𝑆𝐴 implementation, while an Inquiry or Access request
invokes constant look-ups. Figure 5(b) shows the finalization
latency of Heartbeat requests only but with varying throughput
pressure. For each experiment (one bar in Figure 5(b)), we
measured the same latency statistics during a 100-second
run for all successful transactions processed by the L-Chain
(i.e., 100×throughput transactions in total). The throughput
values tested were capped by a “maximum stable” point,
indicating that further increase would lead to permanently
unfinalized transactions. We observe that higher delays reduce
the maximum state throughput, which is intuitive in that higher
delays decrease the system’s overall service efficiency.

In both Figure 5(a) and Figure 5(b), it is observed that
under the real delay scenario and within the stable throughput
region, the three types of requests can be finalized within
2 seconds. This latency performance demonstrates the L-
Chain’s potential of improving the existing CBRS-SAS’s grant
approval process (i.e., responding to Access requests) from
a next-day wait to several seconds wait. The core reason
is that the L-Chain allows the SAS servers to synchronize
states for every L-Chain block cycle and thus update the
common L-Chain ledger in a deterministic and incremental
manner, enabling the L-Chain contract to generate online
allocations. In comparison, the current SAS is not designed to
provide online allocations nor tolerate Byzantine participants.
The CPAS process dictates that SAS servers should faithfully
exchange full-dump records [6] before finalizing allocations
the next morning (US Eastern Time). Moreover, Figure 5(a)
also demonstrates the L-Chain’s capability of fulfilling the
CBSD liveness requirement (i.e., sending routine responses
to Heartbeat requests) at a significant performance margin,
for which the Heartbeat interval is typically set to 30 or 60

12

real delay 50ms 100ms
Network Delay Regime

0

1

2

3

4

5

Fin
al

iza
tio

n
La

te
nc

y
(s

ec
) Request Type=Inquiry

Request Type=Access
Request Type=Heartbeat

(a) At constant 20 TPS throughput.

10 20 30 40 50 60 70 80 90 100
Throughput (TPS)

0

1

2

3

4

5

He
ar

tb
ea

t F
in

al
iz.

 L
at

en
cy

 (s
ec

)

At the maximum
stable throughput

real delay
50ms
100ms

(b) Heartbeat stress test.

Fig. 5. Average request finalization latency (error bar represents the minimum and maximum value) of the L-Chain with 5 SAS servers under three different
delay regimes.

3 5 7 9
Number of SAS Servers (S)

0

1

2

3

4

5

Fin
al

iza
tio

n
La

te
nc

y
(s

ec
) Request Type=Inquiry

Request Type=Access
Request Type=Heartbeat

(a) At constant 20 TPS throughput.

10 20 30 40 50 60 70 80 90 100
Throughput (TPS)

0

1

2

3

4

5

He
ar

tb
ea

t F
in

al
iz.

 L
at

en
cy

 (s
ec

)

*Showing results are at the
maximum stable throughput only

3 SAS Servers
5 SAS Servers
7 SAS Servers
9 SAS Servers

(b) Heartbeat stress test.

Fig. 6. Average request finalization latency (error bar represents the minimum and maximum value) of L-Chains with 𝑆 ∈ {3, 5, 7, 9} SAS servers under
the 50𝑚𝑠 delay regime.

seconds [22].

We further investigated the performance implication of SAS
population 𝑆. The results for L-Chains with four different 𝑆

under the same 50𝑚𝑠 delay regime are shown in Figure 6.
Figure 6(a) shows that under the stable throughput scenario, 𝑆
has a negligible impact on the finalization latency. Meanwhile,
Figure 6(b) shows that larger 𝑆 does become a constraining
factor on the maximum stable throughput and also on the
finalization latency with the request invocation rate approaches
the maximum stable throughput. Considering that a larger
𝑆 provides a higher level of adaptive attack resilience (see
Proposition 2), we will need to choose a practical 𝑆 in
the design phase to strike a balance between security and
throughput capacity in practical deployment.

We caution that our experiment used a simple first-come-
first-server allocation scheme; an optimal allocation algorithm
would most likely incur heavy and non-linear computation at
SAS servers. Readers are deferred to §VIII for discussions on
accommodating complex allocation algorithms. However, the

general observation is that using an active and ledger-based
inter-SAS coordination mechanism (such as a blockchain)
represents an effective way to automate spectrum management
tasks and shorten the spectrum user’s waiting time, compared
to relying on the CPAS procedure for daily allocation assign-
ment.

VIII. DISCUSSION

Optimality of Spectrum Allocation. The current spectrum
assignment function, as is encoded in our spectrum access
contract (Algorithm 2) and implemented in our prototype, is
a straightforward first-come-first-serve allocation scheme. In
practice, spectrum allocation can deploy a much more com-
plex, hopefully, an optimization-based algorithm to guarantee
succinct spectrum assignment with specific service require-
ments such as fairness, bounded response time, or channel uti-
lization rate, as was indicated in prior arts [37]–[40]. However,
instantiating such an optimization-based allocation algorithm
on blockchain smart contracts would incur a very high on-

13

chain cost, as every invocation of the algorithm would be ex-
ecuted and stored by every L-Chain curator. To cope with this
scalability constraint, we are eyeing two potential solutions:
(1) customizing optimization-based allocation algorithms into
minimal yet effective versions so they are suited for blockchain
deployment; (2) using dedicated secure environments, such as
a hardware-based trusted execution environment (TEE) [41],
[42], to execute the algorithms off-chain and return the result
on-chain using a secure commit protocol [43], [44].
Privacy Challenge. The current BD-SAS’s spectrum access
assignment function is executed in a transparent, on-chain
manner in that every L-Chain curator knows each user’s
assignment record. This can be a disincentive for privacy-
aware spectrum users, who may not wish to share their access
or device information with other witnesses, whose associated
users also reside in the same local region. To provide privacy
protection to spectrum users, aside from the off-chain TEE
solutions mentioned above, we could employ obfuscation
mechanisms, such as those with differential privacy [45], [46],
to allow users to control their privacy leakage. Moreover, using
efficient on-chain multiparty computation is also a potential
direction to explore.

IX. CONCLUSION

We formulated a decentralized SAS model for fault-tolerant
and automated dynamic spectrum sharing and introduced the
BD-SAS architecture as a concrete solution. BD-SAS consists
of two layers of blockchains: a G-Chain for global regulation
and SAS server management and L-Chains for providing
spectrum access assignment to spectrum users in the local
regions, without having the users place trust in individual SAS
servers. We implemented a BD-SAS prototype using Ethereum
Rinkey testnet to emulate the G-Chain and Hyperledger Fabric
platform to implement the L-Chains. The result demonstrated
the feasibility of G-Chain in performing the critical security
mechanisms including SAS server reshuffling as well as the
responsiveness of L-Chain in generating spectrum access
assignments amid stringent timing requirements. Lastly, we
identified challenges for BD-SAS and future directions.

ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation under grants 1916902, 1916926, 2154929,
and 2154930, the Army Research Office under grant W911NF-
20-1-0141, and a gift from InterDigital.

REFERENCES

[1] Y. Xiao, Blockchain and Distributed Consensus: From Security Analysis
to Novel Applications. PhD thesis, Virginia Tech, 2022.

[2] Federal Communications Commission (FCC), “What we do.” https://
www.fcc.gov/about-fcc/what-we-do, accessed December 14, 2022.

[3] National Telecommunications and Information Administration (NTIA),
“About NTIA.” https://ntia.gov/page/about-ntia, accessed December 13,
2022.

[4] The Office of the Federal Register (OFR) and the Government Pub-
lishing Office, “OFR: Electronic Code of Federal Regulations, Title
47: Telecommunication, Part 96 - Citizens Broadband Radio Service.”
https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.96, 2015.

[5] Wireless Innovation Forum, Signaling Protocols and Procedures for
Citizens Broadband Radio Service (CBRS): Spectrum Access System
(SAS) - Citizens Broadband Radio Service Device (CBSD) Interface
Technical Specification, 12 2016. Version V1.0.1.

[6] Wireless Innovation Forum, Spectrum Sharing Committee Policy and
Procedure Coordinated Periodic Activities Policy, 6 2018. Version
V1.3.0.

[7] Wireless Innovation Forum, Signaling Protocols and Procedures for
Citizens Broadband Radio Service (CBRS): Spectrum Access System
(SAS) - SAS Interface Technical Specification, 3 2020. Version V1.3.2.

[8] M. Kratsios, “Emerging technologies and their expected impact on non-
federal spectrum demand,” Executive Office of the President of the
United States, 2019.

[9] S. Yrjölä, “Analysis of blockchain use cases in the citizens broadband
radio service spectrum sharing concept,” in International Conference
on Cognitive Radio Oriented Wireless Networks, pp. 128–139, Springer,
2017.

[10] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[11] M. B. Weiss, K. Werbach, D. C. Sicker, and C. E. C. Bastidas, “On the
application of blockchains to spectrum management,” IEEE Transactions
on Cognitive Communications and Networking, vol. 5, no. 2, pp. 193–
205, 2019.

[12] Federal Communications Commission (FCC), “Remarks of commis-
sioner jessica rosenworcel [at] mobile world congress americas, los
angeles, california, september 13, 2018.” https://docs.fcc.gov/public/
attachments/DOC-354091A1.pdf, 2018.

[13] L. Mearian, “FCC eyes blockchain to track, monitor growing
wireless spectrums.” https://www.computerworld.com/article/3393179/
fcc-eyes-blockchain-to-track-monitor-growing-wireless-spectrums.
html, accessed April 20, 2023.

[14] T. Ariyarathna, P. Harankahadeniya, S. Isthikar, N. Pathirana, H. D.
Bandara, and A. Madanayake, “Dynamic spectrum access via smart
contracts on blockchain,” in 2019 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–6, IEEE, 2019.

[15] M. Grissa, A. A. Yavuz, and B. Hamdaoui, “Trustsas: a trustworthy
spectrum access system for the 3.5 ghz cbrs band,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pp. 1495–1503,
IEEE, 2019.

[16] H. Zhang, S. Leng, and H. Chai, “A blockchain enhanced dynamic
spectrum sharing model based on proof-of-strategy,” in ICC 2020-2020
IEEE International Conference on Communications (ICC), pp. 1–6,
IEEE, 2020.

[17] S. Shi, Y. Xiao, W. Lou, C. Wang, X. Li, Y. T. Hou, and J. H. Reed,
“Challenges and new directions in securing spectrum access systems,”
IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6498–6518, 2021.

[18] Y. Xiao, S. Shi, W. Lou, C. Wang, X. Li, N. Zhang, Y. T. Hou, and J. H.
Reed, “Decentralized spectrum access system: Vision, challenges, and a
blockchain solution,” IEEE Wireless Communications, pp. 1–9, 2022.

[19] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
p. 30, ACM, 2018.

[20] Wireless Innovation Forum, CBRS Communications Security Technical
Specification, 6 2020. Version V1.2.0.

[21] Wireless Innovation Forum, CBRS Operational Security, 7 2017. Version
V1.0.0.

[22] Google, “Changes in Google SAS response.” https://support.google.com/
sas/answer/9981557, accessed April 20, 2023.

[23] Google, “SAS sync (or IAP) & what it means for you.” https://support.
google.com/sas/answer/9554929, accessed December 21, 2022.

[24] Z. Li, W. Wang, J. Guo, Y. Zhu, L. Han, and Q. Wu, “Blockchain-
assisted dynamic spectrum sharing in the CBRS band,” in 2021
IEEE/CIC International Conference on Communications in China
(ICCC), pp. 864–869, IEEE, 2021.

[25] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis,
and P. Fan, “6g wireless networks: Vision, requirements, architecture,
and key technologies,” IEEE Vehicular Technology Magazine, vol. 14,
no. 3, pp. 28–41, 2019.

[26] M. B. Weiss and W. Lehr, “Market based approaches for dynamic
spectrum assignment,” Available at SSRN 2027059, 2009.

[27] H. Attiya and J. Welch, Distributed computing: fundamentals, simula-
tions, and advanced topics, vol. 19. John Wiley & Sons, 2004.

[28] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

https://www.fcc.gov/about-fcc/what-we-do
https://www.fcc.gov/about-fcc/what-we-do
https://ntia.gov/page/about-ntia
https://www.ecfr.gov/cgi-bin/text-idx?node=pt47.5.96
https://docs.fcc.gov/public/attachments/DOC-354091A1.pdf
https://docs.fcc.gov/public/attachments/DOC-354091A1.pdf
https://www.computerworld.com/article/3393179/fcc-eyes-blockchain-to-track-monitor-growing-wireless-spectrums.html
https://www.computerworld.com/article/3393179/fcc-eyes-blockchain-to-track-monitor-growing-wireless-spectrums.html
https://www.computerworld.com/article/3393179/fcc-eyes-blockchain-to-track-monitor-growing-wireless-spectrums.html
https://support.google.com/sas/answer/9981557
https://support.google.com/sas/answer/9981557
https://support.google.com/sas/answer/9554929
https://support.google.com/sas/answer/9554929

14

[29] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th annual symposium on foundations of computer science (cat. No.
99CB37039), pp. 120–130, IEEE, 1999.

[30] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for byzantine fault tolerant services,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles, pp. 253–267, 2003.

[31] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (Usenix ATC
14), pp. 305–319, 2014.

[32] J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in 2018
48th annual IEEE/IFIP international conference on dependable systems
and networks (DSN), pp. 51–58, IEEE, 2018.

[33] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
pp. 347–356, 2019.

[34] Etherscan.io, “Rinkeby testnet documentation.” https://www.rinkeby.io/,
accessed April 20, 2023.

[35] NCC Group, “Reference implementation of a verifiable random function
(vrf) from IETF draft-irtf-cfrg-vrf-06 specification.” https://github.com/
nccgroup/draft-irtf-cfrg-vrf-06, accessed April 20, 2023.

[36] Hyperledger Project, “Hyperledger caliper.” https://hyperledger.github.
io/caliper/, accessed April 20, 2023.

[37] K. S. Manosha, S. Joshi, T. Hänninen, M. Jokinen, P. Pirinen, H. Posti,
K. Horneman, S. Yrjölä, and M. Latva-aho, “A channel allocation algo-
rithm for citizens broadband radio service/spectrum access system,” in
2017 European Conference on Networks and Communications (EuCNC),
pp. 1–6, IEEE, 2017.

[38] X. Ying, M. M. Buddhikot, and S. Roy, “Sas-assisted coexistence-
aware dynamic channel assignment in cbrs band,” IEEE Transactions
on Wireless Communications, vol. 17, no. 9, pp. 6307–6320, 2018.

[39] S. Basnet, Y. He, E. Dutkiewicz, and B. A. Jayawickrama, “Resource
allocation in moving and fixed general authorized access users in
spectrum access system,” IEEE Access, vol. 7, pp. 107863–107873,
2019.

[40] N. Jai, S. Li, C. Li, Y. T. Hou, W. Lou, J. H. Reed, and S. Kom-
pella, “Optimal channel allocation in the cbrs band with shipborne
radar incumbents,” in 2021 IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN), pp. 80–88, IEEE, 2021.

[41] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: what it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1, pp. 57–64, IEEE, 2015.

[42] V. Costan and S. Devadas, “Intel sgx explained.” Cryptology ePrint
Archive, Paper 2016/086, 2016. https://eprint.iacr.org/2016/086.

[43] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 185–200,
IEEE, 2019.

[44] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “Privacyguard:
Enforcing private data usage control with blockchain and attested off-
chain contract execution,” in European Symposium on Research in
Computer Security, pp. 610–629, Springer, 2020.

[45] C. Dwork, “Differential privacy: A survey of results,” in International
conference on theory and applications of models of computation, pp. 1–
19, Springer, 2008.

[46] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggre-
gatable privacy-preserving ordinal response,” in Proceedings of the 2014
ACM SIGSAC conference on computer and communications security,
pp. 1054–1067, 2014.

Yang Xiao [M] received the Ph.D. degree in Com-
puter Engineering from Virginia Tech in 2022. He is
currently an Assistant Professor with the Department
of Computer Science at the University of Ken-
tucky, Lexington, KY, USA. His research interests
lie in network security, distributed system security,
blockchain and decentralized systems, and mobile
network security.

Shanghao Shi [S] is currently pursuing the Ph.D.
degree with the Department of Computer Science at
Virginia Tech, supervised by Prof. Wenjing Lou. He
received his B.S. degree from the School of Infor-
mation and Communication Engineering at Beijing
University of Posts and Telecommunications. His
research interests lie in wireless security and IoT
security.

Wenjing Lou [F’15] is the W. C. English Endowed
Professor of Computer Science at Virginia Tech and
a Fellow of the IEEE. Her research interests cover
many topics in the cybersecurity field, with her cur-
rent research interest focusing on wireless network
security, trustworthy AI, blockchain, and security
and privacy problems in the Internet of Things (IoT)
systems. Prof. Lou is a highly cited researcher by the
Web of Science Group. She received the Virginia
Tech Alumni Award for Research Excellence in
2018. She received the INFOCOM Test-of-Time

paper award in 2020. She was the TPC chair for IEEE INFOCOM 2019
and ACM WiSec 2020. She was the Steering Committee Chair for IEEE
CNS conference from 2013 to 2020. She is currently a steering committee
member of IEEE INFOCOM and IEEE Transactions on Mobile Computing.
She served as a program director at the US National Science Foundation
(NSF) from 2014 to 2017.

Chonggang Wang [F’17] is a Principal Engineer
at InterDigital Communications Inc. He has 20+
years of experience in the field of communications,
networking, and computing including research, de-
velopment and standardization of wireless systems,
Internet of Things (IoT), quantum internet, internet
protocols. He currently leads a technical team in the
Customer Project & Partners department of InterDig-
ital’s Research and Innovation Wireless Lab. In this
role he and his team focus on research, innovation,
and standardization of blockchain technology and its

applications for future communications and computing systems (e.g., 5G/6G,
decentralized machine learning, federated learning). He and his team actively
engage in collaborations with leading universities/institutions and industry to
explore future networking and networked systems. He participates industry
standardization activities with IETF, ETSI, 3GPP, oneM2M, and IEEE. His
research interests also include blockchain technologies and applications,
5G/6G systems, quantum internet, edge computing, and intelligent IoT. He
is a Fellow of the IEEE for his contributions to IoT enabling technologies.
He’s the founding Editor-in-Chief of IEEE IoT Journal and is currently the
Editor-in-Chief of IEEE Network. He holds more than 100 US granted patents.

https://www.rinkeby.io/
 https://github.com/nccgroup/draft-irtf-cfrg-vrf-06
 https://github.com/nccgroup/draft-irtf-cfrg-vrf-06
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
https://eprint.iacr.org/2016/086

15

Xu Li currently is a senior staff engineer at Inter-
Digital Communications Inc. His research interests
include 3GPP wireless systems, Internet-of-Things
(IoT), blockchain technology, and data semantics.
He has published technical papers on mainstream
international journals and conferences, such as IEEE
INFOCOM, IEEE TPDS, IEEE JSAC, etc. and has
been on the technical program committee of ma-
jor technical conferences such as IEEE Globecom,
IEEE ICC, IEEE WCNC, etc. His current major
activities include wireless system standardization

(such as 3GPP, oneM2M, IETF, W3C, etc.) and he has more than 70 US
approved/pending patent applications.

Ning Zhang [M] received the Ph.D. degree from
Virginia Tech in 2016. He is currently an Assis-
tant Professor with the Department of Computer
Science and Engineering, Washington University in
St. Louis. Before that, he was with an industry
as a cyber engineer and a technical lead for over
ten years. His research focus is system security,
which lies at the intersection of security, embedded
systems, computer architecture, and software.

Y. Thomas Hou [F’14] received his Ph.D. from
NYU Tandon School of Engineering in 1998. He is
currently Bradley Distinguished Professor of Elec-
trical and Computer Engineering at Virginia Tech,
Blacksburg, VA, USA, which he joined in 2002. He
was a Member of Research Staff at Fujitsu Labora-
tories of America in Sunnyvale, CA from 1997 to
2002. His current research focuses on developing
innovative real-time solutions to complex science
and engineering problems arising from wireless and
mobile networks. He is also interested in wireless

security. He has published over 350 papers in IEEE/ACM journals and
conferences. His papers were recognized by 10 best paper awards from
IEEE and ACM, including an IEEE INFOCOM Test of Time Paper Award
in 2023. He holds six U.S. patents. He authored/co-authored two graduate
textbooks: Applied Optimization Methods for Wireless Networks (Cambridge
University Press, 2014) and Cognitive Radio Communications and Networks:
Principles and Practices (Academic Press/Elsevier, 2009). Prof. Hou was
named an IEEE Fellow for contributions to modeling and optimization of
wireless networks. He was/is on the editorial boards of a number of IEEE
and ACM transactions and journals. He was Steering Committee Chair of
IEEE INFOCOM conference and was a member of the IEEE Communications
Society Board of Governors. He was also a Distinguished Lecturer of the IEEE
Communications Society.

Jeffrey H. Reed [F’04] is the Willis G. Worcester
Professor of Electrical and Computer Engineering
(ECE) in the Bradley Department of Electrical and
Computer Engineering at Virginia Tech. He is the
Founding Director of Wireless @ Virginia Tech, one
of the largest wireless research groups in the United
States, and the previous Interim Director and now
CTO for the Commonwealth Cyber Initiative for
the State of Virginia. In 2010, He founded the Ted
and Karyn Hume Center for National Security and
Technology and served as its interim director. His

current areas of expertise are in software-defined radios (SDRs), AI-enabled
5G wireless, wireless security/information assurance, interference analysis,
and vehicular communications.

	Introduction
	Motivation for Decentralized SAS
	Our Contribution

	Background and Related Work
	The Existing Spectrum Access System
	Blockchain for Spectrum Management

	System Model
	Participants
	Main Tasks
	Key Requirements for Decentralization
	Threat Model

	The BD-SAS Architecture
	BD-SAS Overview
	G-Chain Operation
	SAS Server Reshuffle Procedure
	L-Chain Operation

	Analyses
	Implementation
	Evaluation
	G-Chain Performance and Feasibility
	L-Chain Performance

	Discussion
	Conclusion
	References
	Biographies
	Yang Xiao
	Shanghao Shi
	Wenjing Lou
	Chonggang Wang
	Xu Li
	Ning Zhang
	Y. Thomas Hou
	Jeffrey H. Reed

