
A Decentralized Truth Discovery Approach to the
Blockchain Oracle Problem
Yang Xiao∗, Ning Zhang†, Wenjing Lou‡, Y. Thomas Hou‡

∗University of Kentucky, Lexington, KY, USA
†Washington University in St. Louis, St. Louis, MO, USA

‡Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract—When a blockchain application runs on data from
the real world, it relies on an oracle mechanism that transports
data from external sources to the blockchain. The blockchain
oracle problem arises around the need to procure trustworthy
data from external sources. Previous works have addressed
data authenticity/integrity by building a secure channel between
blockchain and external sources while employing a decentralized
oracle network to avoid a single point of failure. However, the
truthful data challenge, which emerges when legitimate external
sources submit fraudulent or deceitful data, remains unsolved.
In this paper, we introduce a new decentralized truth-discovering
oracle architecture called DECENTRUTH to address the truthful
data challenge using a data-centric approach. DECENTRUTH
aims to elevate the “truthfulness” of external data input by
enabling decentralized oracle nodes to discover and reach con-
sensus on truthful values of common data objects from multi-
sourced inputs in an off-chain manner. It harmonizes techniques
in both the data plane and consensus plane—truth discovery (TD)
and asynchronous BFT consensus—and enables nodes to finalize
the same estimated truths on data objects with high accuracy,
amid the harsh asynchronous network condition and presence of
Byzantine sources and nodes. We implemented DECENTRUTH
and evaluated its performance in a simulated oracle service
scenario. The results demonstrate significantly higher Byzantine
resilience and long-term data feed accuracy of DECENTRUTH,
compared to existing median-based aggregation methods.

Index Terms—Blockchain oracle problem, trustworthy data
feed, decentralized consensus

I. INTRODUCTION

Blockchain technology is known for enabling distrustful
entities to exchange value and curate financial ledgers without
involving a central authority. Smart contract, one prominent
blockchain application native to many known platforms (e.g.,
Ethereum [1], Polkadot [2], EOSIO [3]), has redefined how
independent parties reach contractual agreement and execute
business logic without a trusted intermediary, culminating in
a new world of decentralized applications (DApps). Mean-
while, blockchain applications make the most compelling
case when they operate on information about the real world.
An investment smart contract needs to fetch asset prices as
well as the platform token’s exchange rate from external
markets; an insurance smart contract needs to collect the usage
and environment data of the insured objects to determine
premiums and payouts [4]; a supply chain DApp feeds on the
merchandise location data for automating ownership transfer
and on-delivery payment [5]. In many cases, the external world
also collects information from the blockchain such as what

types of external data are most inquired [6]. It is evident that
the ability of blockchain applications to communicate with
the external world is crucial to unleashing their true economic
potential.

The Oracle Problem in Blockchain. In current blockchain
systems, the mechanism to fetch data from external sources
is known as data feed, or more commonly oracle, when the
data feed is instantiated as a standalone service. Data from
external sources, however, are foreign to the blockchain system
and outside the jurisdiction of built-in consistency measures.
They are in contrast to the transaction data that are inherently
generated within the blockchain and verifiable by the native
consensus. The lack of trustworthy mechanism for blockchains
to communicate with the external world—to secure high-
fidelity external data in particular—is known as the oracle
problem. The oracle problem has become a major hindrance
to blockchain’s wider utility in the real-world economy [7].

Existing work has tackled the blockchain oracle problem
from the source authenticity (i.e., data are from legitimate
sources) and data integrity (i.e., no tampering during trans-
portation) perspectives [8], [9], [10], [11]. They generally
involve enabling authenticated communication between the
blockchain and an external data source, following either the
third-party model that provides oracle service as an indepen-
dent entity [8], [9] or the first-party model that allows data
sources to act as oracles directly [10], [11]. They generally
assume that the oracle service is always reliable and that
external sources can provide definitive and truthful input on
a given data object. However, in a decentralized blockchain
system, it can be difficult to convince users to trust one oracle
service for providing a specific data feed as it is subject
to a single point of failure. It is also risky to trust single
sources for critical data (financial DApps in particular)—
as authenticated sources may also suffer from Byzantine
influence and provide erroneous data, which could bring
catastrophe to the blockchain applications. The above risks
were embodied in two recent attacks (October 2022) on two
cryptocurrency lending platforms, Mango Markets and Moola
Market, which involved the compromise of oracle services
followed by manipulation of price data, resulting in more than
100 million US dollars lost [12].

Philosophically, relying on individually trusted oracles and
data sources not only invites targeted attacks but also defeats

the purpose of a decentralized blockchain application. As
a result, mainstream blockchain oracle services [13], [14],
[15], [16] have gradually adopted the decentralized oracles
(DO) model where a consortium of independent and reputed
oracle nodes collect data from distributed external sources with
respect to common data objects. Data feed proposals from
different oracle nodes are aggregated on-chain as the final data
feed to the applications.

The Truthful Data Challenge. While it is commendable
that existing DO solutions have taken advantage of oracle and
source redundancy to tackle the single point of failure, they are
still susceptible to the influence of low-quality or compromised
external data. There generally lacks a data-plane solution to
attaining high-quality data feed in the presence of unreliable
or malicious data sources. Some of the DO solutions adopt
the heuristic that each oracle node is incentivized to select so-
called “premium” data sources for their own good [17] while
a global reputation scheme can be used to select the most
reliable oracle nodes [11], [15]. Also, the on-chain aggrega-
tion (such as taking the average or median [13], [16]) may
filter out outliers in the oracles’ data proposals. Nonetheless,
the reputation-based incentive on source selection does not
exclude the presence of authenticated but malicious sources.
And the lightweight on-chain aggregation mechanism does not
provide effective resilience to sources who dynamically supply
Byzantine data to oracle nodes. To provide a trustworthy data
feed service to the blockchain, we argue that an oracle solution
should incorporate a data-centric mechanism to extract the
truthful data (close to the inputs provided by honest sources)
out of multi-sourced data and achieve resilience against ad-
versely affected sources or oracle nodes.

We observe that truth discovery (TD), a data mining tech-
nique that independently evolved [18], [19], [20], poses an
ideal data-centric solution to the truthful data challenge. TD
jointly estimates the ground truths of data objects and source
reliability from potentially conflicting multi-sourced inputs.
Unreliable sources are assigned low reliability degrees that will
penalize them in the weighted aggregation step. When adapted
to an oracle system, this approach can potentially extract
trustworthy information from the noisy multi-sourced data,
as long as the multi-sourced data exhibits certain statistical
patterns and there is a “ground truth” of the data object.
However, the traditional TD assumes the algorithm is executed
(or eventually aggregated) by one trusted server. To instantiate
TD for blockchain oracles, novel adaptations are needed to
decentralize the TD workflow, accommodate streaming data
inputs, and react to potentially malicious sources and decision-
making nodes.

A New Oracle Model. Eyeing the potential of TD in
addressing the truthful data challenge and providing a holistic
solution to the blockchain oracle problem, we propose the
Decentralized Truth Discovering Oracles (DTDO) model to
enable blockchain applications to procure truthful data from
external sources of varying quality without introducing a
central point of trust. This model builds upon a network of

decentralized oracle nodes, who connect to each other to form
a dedicated off-chain network for performing collective truth
discovery on multi-sourced data. Each node collects inputs
for a common list of data objects from its external sources.
The nodes agree on the same value for each data object on
a batch basis. These values, called the truth estimates, are
committed as final data feed to the blockchain by each node.
For producing the same truthful estimates across all nodes
with high reliability while preserving decentralization, the
model entails the combined use of data-plane and consensus
mechanisms to solve the following challenges. First, sources
may arbitrarily deviate their inputs due to abnormality or
adversarial influence which can also be adaptive. Second, the
off-chain network of nodes in the worst case may operate in
an asynchronous, Byzantine-ridden situation—communication
between nodes is subject to indefinite delay and some nodes
may alter their communicated messages arbitrarily.

DECENTRUTH. We introduce the DECENTRUTH archi-
tecture as concrete instantiation of the DTDO model. DE-
CENTRUTH combines techniques from two lines of research:
online incremental TD [21], [22], [23] and asynchronous
Byzantine fault tolerant (BFT) consensus [24], [25], [26]. We
design a novel composite batch incremental TD process (CBI-
TD) as the data-plane solution. Nodes are able to consistently
produce truth estimates from a common subset of local truth
proposals for every batch of objects, and perform reliability
tracking on their local sources and peer nodes for achieving
Byzantine resilience. For the consensus plane, we devise
a consensus protocol called weight-prioritized asynchronous
common subset (WP-ACS) that enables nodes to propose its
local truth estimates and jointly decide on the aforementioned
common subset of proposals amid the harsh asynchronous
network condition. Priority is given to the proposals from
nodes with higher historical weights computed by CBI-TD.
The combination of the two techniques realizes a decentralized
oracle service with strong guarantees on Byzantine resilience
and data-plane accuracy.

In summary, we make the following contributions:
• We formulate a decentralized truth discovering oracle

(DTDO) model to address the truthful data challenge
for blockchain oracles. It allows blockchain applications
to obtain truthful data from potentially untrustworthy
sources, while preserving the decentralization property.

• We introduce the DECENTRUTH architecture to realize
the DTDO model while maintaining truth discovery ac-
curacy and Byzantine resilience. DECENTRUTH is com-
posed of two components, CBI-TD and WP-ACS, which
harmonize with each other to realize online incremental
truth discovery and consensus on global truth estimates.

• We show that DECENTRUTH achieves Byzantine re-
silience under a practical adversary model, including
adaptive Byzantine corruption on legitimate sources and
nodes as well as network synchrony.

• We implemented DECENTRUTH and evaluated its per-
formance in an emulated oracle service scenario. The
result shows that our system presents a practical ap-

proach towards the truthful data challenge with effective
Byzantine resilience and long-term estimation accuracy,
outperforming the median-based aggregation mechanism
in a well-known decentralized oracle scheme.

II. BACKGROUND AND RELATED WORK

A. Existing Solutions to the Blockchain Oracle Problem

Earlier solutions have addressed the authenticity and in-
tegrity part of the blockchain oracle problem. Town Crier
[8] is a third-party oracle service for Ethereum smart con-
tracts. It builds on a smart-contract front end and a trusted
execution environment (TEE) back end, realizing a secure
channel for transporting data from HTTPS-enabled websites to
client contracts. DECO [9] realizes a similar authenticated data
feed functionality but without trusted computing hardware. It
relies on the participation of independent oracles and zero-
knowledge proofs after a multiparty authentication process.
PDFS [10] and API3 [11] assign the oracle function to
data sources directly, representing a “first-party” approach,
which essentially tries to incorporate data sources into the
blockchain’s decentralized trust model. However, the above
solutions, third-party and first-party alike, lack effective coun-
termeasures against low-quality and dishonest (authenticated)
sources that cannot be prevented from providing bad data into
the blockchain. Also, the oracle service itself has to be trusted,
posing a single point of failure [7].

Existing commercial oracle services tend to adopt the de-
centralized oracles (DO) model to introduce redundancy to
the oracle nodes. Chainlink [13] is currently the most popular
DO solution that comprises of 21 independent and reputed
oracle nodes, each is able to provide the Town Crier and
DECO functionalities. Other DO solutions like Band Protocol
[16], WINkLink [15], and UMA [14] builds on a derivative
business logic such as a reputation or reward system to pro-
mote the honest participation of oracle nodes. However, how
to deal with the authenticated but unreliable sources, which
culminates in the truthful data challenge, still remains largely
unsolved. In recent proposals, Astraea [27] and Cai et al. [28]
use a smart contract to implement a stake-and-vote mechanism
to select the most favorable external data. Chainlink [13]
and Band Protocol [16] use lightweight on-chain aggregation
mechanisms on multi-sourced data, notably taking the median,
to rid the outliers in oracle data proposals. These mechanisms
potentially add to the expensive on-chain computation and also
do not represent an effective data-plane solution to countering
fraudulent or deceitful data from individual sources. We stress
that in order to solve the truthful data challenge, a data-
plane mechanism that extracts truthful information from multi-
sourced data should be a native feature of a DO service
in order to achieve resilience against potentially Byzantine
sources and oracle nodes.

B. Online and Distributed Truth Discovery

Emerged as an independent research, truth discovery (TD)
provides a potential data-plane methodology to address the

truthful data challenge. We identify two lines of TD research
that partially inspired our data-plane design.

Online TD aims to instantiate TD on streaming input in a
data-driven fashion, in which data are continuously generated
by sources and fed to the TD algorithm. They commonly adopt
lightweight mechanisms to handle streaming inputs in an on-
line or recursive fashion [29], [30], [31]. Li et al. [32] propose
an online incremental TD scheme that is able to estimate the
truths and source reliability degrees with consistent accuracy
when the reliability of sources evolves over time. Though not
addressing Byzantine sources, these solutions provide valuable
lessons on maintaining TD accuracy in continuous operation.

Distributed TD aims to scale TD to larger data volume
and source diversity. To accommodate large data volumes in
crowdsourcing tasks, Ouyang et al. [21] decompose the origi-
nal TD problem into several small-scale tasks that can be run
in parallel before aggregation. Wang et al. [23] extend the TD
problem to a two-stage distributed setting, wherein TD servers
handle local data sources while a central server aggregate the
local results. These parallel and distributed TD solutions still
rely on a central server to perform task allocation and final
aggregation. Tian et al. [33] instantiate a TD mechanism using
Ethereum smart contract. Fu et al. [34] propose a decentralized
TD formulation based on maximum likelihood estimation and
P2P gossiping. The inter-node consistency on discovered truths
and adversarial influence on nodes are not considered.

III. SYSTEM MODEL

To tackle the truthful data challenge of blockchain ora-
cles, we propose the decentralized truth discovering oracles
(DTDO) model where a decentralized network of oracles
procure truthful data from distributed sources.

A. Network and Task Model

Consider a network of N oracle nodes (“nodes” hereafter)
tasked with discovering the true values of common data objects
for a blockchain application. We assume there exist S external
sources that provide data inputs on the objects to the nodes.
Each node n ∈ [N] ([N] := {1, ..., N}) has access to a subset
of the data sources denoted Sn ⊂ [S]. Sn thus represents the
“local sources” that report to node n. Nodes may communicate
with each other via asynchronous but authenticated off-chain
channels. That is, messages between any two nodes are guar-
anteed eventual delivery, but message delays are unpredictable.
We choose the asynchrony assumption for it captures the
unpredictable network conditions in the off-chain realm, where
nodes may communicate with each other in an ad hoc network
and the communication link is subject to arbitrary delay in the
worst case. Messages are guaranteed eventual delivery with
authenticity and integrity provided by TLS communication.

The task of the nodes is to reach an agreement on the
same truth estimate of high fidelity for a growing list of data
objects. This process is executed in epochs, with each epoch
e committed to a batch of objects Be with fixed batch size
B. This batch configuration accommodates the scenario that
the blockchain application needs to periodically take action

upon every cycle of updates. Specifically for each epoch e,
node n ∈ [N] receives inputs from its local sources, denoted
{xn

s,i}s∈Sn,i∈Be . xn
s,i is null if source s does not provide input

on object i. The input data can be of any type. In this paper,
we focus on continuous data for a consistent narrative (e.g.,
temperature measurement and stock price). At the end of an
epoch, all nodes need to reach a consensus on the same truth
estimates {x̂i}i∈Be for this batch, which should be close to
the ground truths.

As a motivating example, consider an investment DApp that
needs to feed on hourly closing prices of a portfolio of stocks
from different market sources. The price of a stock at a certain
hour is an object. The quote on the price-hour provided by a
source is an input. By the end of each hour, all honest nodes
agree on the same quotes for the same collection of stocks,
which are then committed to the DApp’s smart contract.

B. Threat Model

We assume an honest majority of sources and oracle nodes.
Specifically, the adversary can corrupt up to fs fraction of
authenticated sources and fn fraction of nodes at any time,
with fs < 0.5 and fn < 1/3, and exert Byzantine influence
on corrupted sources and nodes. In the data plane, Byzantine
sources may provide arbitrary values within the input space on
any object to their corresponding nodes. Similarly, Byzantine
nodes may send arbitrary or even conflicting information to
peer nodes. In line with the asynchronous network assumption,
a strong adversary may also introduce arbitrary delays to the
communication link between any nodes. We further assume
that adversarial corruptions are adaptive in that the adversary
can corrupt different subsets of sources and nodes throughout
time. The corrupted sources and nodes may act innocuously
at first but suddenly turn Byzantine at some points. An honest
source provides inputs close to ground truths with high con-
sistency, measured by the reciprocal of the standard deviation
of its inputs. An honest node strictly follows the predefined
protocol and does not disseminate conflicting information.

The threshold assumption on Byzantine sources and nodes
is in line with the existing DO formulations [13], [16] as the
sources should be authenticated by all nodes, and the nodes
operate with valid credentials. The data-plane goal is not to
eliminate the influence of Byzantine sources. A rather practical
goal is to maximally mitigate such influence, attaining high
accuracy of data feed.

IV. BUILDING BLOCKS

A. Baseline TD

Given a list of objects O and a collection of inputs
{xs,o}s∈S,o∈O from source group S on each object in O, TD
aims to jointly estimate the truths behind the objects {x̂o}o∈O
and the reliability degrees of sources {rs}s∈S so that the
estimates approximate the ground truths as close as possible.

Prior wisdom provided different mathematical formulations
for the TD problem, with nuanced assumptions on issues
including input data generation model, data format, source re-
liability consistency and dependence, and correlation between

objects [20]. The formulations commonly take the form of
a joint optimization problem and the solutions resemble an
iterative procedure, in which truth aggregation (Eq. (1)) and
the source reliability degree estimation (Eq. (2)) take place
alternately until a certain convergence criterion is met.

x̂o =

∑
s∈S 1s,orsxs,o∑

s∈S 1s,ors
∀o ∈ O (1)

rs = g

(∑
o∈O

d(xs,o, x̂o)

)
∀s ∈ S (2)

where 1s,o returns 1 if source s provided input on object
o (0 otherwise). d(·, ·) is a distance measure between input
xs,o and the current truth estimate x̂o. g(·) is a monotonically
decreasing function. Choices on d(·, ·) and g(·) vary among
different solutions. Having source reliability in the estimation
loop allows the TD algorithm to capture the consistency of
a source’s inputs on all objects and assign high reliability
degrees to sources with consistently accurate inputs.

When instantiating TD for our DTDO model, the baseline
TD cannot be used directly since it works on a static, mono-
lithic dataset in a centralized fashion. We will use parts of the
baseline TD algorithm in the TD component of our system
which also takes inspiration from online and distribution TD
approaches (see §II-B for discussions). It is also worth noting
that some real-world data objects lack a “ground truth”, which
poses a challenge to TD deployment and accuracy evaluation.
We will explore this kind of data in future work.

B. BFT Consensus and ACS

The BFT consensus problem has been extensively studied
in the distributed systems and blockchain community [35],
[36]. In the simplest form, it describes a network of N nodes
working to agree on a common value, while up to F nodes may
behave maliciously (Byzantine) by sending arbitrary values to
other nodes [37]. The consensus goal is reachable if N ≥
3F + 1 [38].

We are interested in one special type of BFT consensus
called asynchronous common subset (ACS) which was first
formulated by Ben-Or et al. [24]. “Asynchronous” refers to
the condition that messages within the network can be delayed
arbitrarily, though the eventual delivery is guaranteed, in line
with our network setting in §III-A. In such a network of
N nodes, up to F nodes can be Byzantine and each node
n has a proposal Pn. The goal of ACS is to allow all
correct nodes to agree on a common subset of proposals,
denoted CSP . An ACS protocol can be composed of two BFT
sub-protocols, namely reliable broadcast (RBC) and binary
agreement (BA). RBC is a consensus primitive that allows
a node to safely disseminate its proposal to peer nodes [39].
When node n starts instance RBC[n] with proposal Pn, the
following properties are guaranteed: 1) Agreement: If any two
correct nodes deliver P and P ′, then P = P ′; 2) Validity: If
the leader n is correct, then all correct nodes will eventually
deliver Pn. BA is a lightweight consensus primitive that allows
nodes to agree on a binary value ∈ {0, 1}. BA achieves

the following properties: 1) Termination: If all correct nodes
receive input, then each of them will end up with a decision. 2)
Agreement: If any correct node decides b, then all other correct
nodes will decide b. 3) Validity: If any correct node decides
b, then b must be the input of at least one node. If all correct
nodes have the same input b, then b must be the final decision.
To achieve termination in an asynchronous network, BA needs
to make random decisions at times when seeing conflicting or
insufficient information. In known BA implementations [40],
[41], a cryptographic scheme called common coin (COMCOIN)
[42] is used to provide such randomness. When at least
F+1 nodes execute the COMCOIN(k) protocol, all nodes will
receive the same coin toss result coink ∈ {0, 1} for object k.

An ACS protocol’s agreement, termination, and validity
properties follow from its composing RBC and BA protocols.
In §V-B we will use RBC, BA, and COMCOIN to compose
our customized WP-ACS scheme, a key DECENTRUTH com-
ponent that facilitates local truth consensus.

V. DECENTRUTH

We introduce the DECENTRUTH architecture as a concrete
instantiation of the DTDO model. Fig. 1 illustrates the work-
flow of DECENTRUTH of N nodes for one epoch. After
receiving local inputs for the current epoch e, each node n
computes a local estimate x̃n

i for every object i ∈ Be. These
estimates constitute node n’s local proposal, denoted Pn. After
going through a consensus process called weight-prioritized
asynchronous common subset (WP-ACS), all nodes decide on
a common subset of proposals denoted CSP , which is subse-
quently fed to the global TD algorithm. Here “global” means
the algorithm and its hyperparameters are pre-determined in
all nodes. The global TD at all honest nodes will return the
same estimated truths and the node weights. At the epoch end,
each node updates the reliability degrees of its local sources
based on the newly obtained truth estimates. The updated
source reliability degrees will be used for local truth estimation
in the next epoch. The local truths estimation, global TD,
and source reliability updating constitute a composite batch
incremental TD (CBI-TD) process that keeps track of source
reliability degrees and node weights and make online decisions
on global truth estimates. Notably, we focus on the off-chain
operation in DECENTRUTH. Realization of the final data feed
commitment to blockchain applications is an independent task
that we defer to future extension. Next, we elaborate on the
two major system components, i.e., CBI-TD and WP-ACS.

A. Component 1: CBI-TD

Each node n maintains four types of internal variables: re-
liability degree rns , error measure ϵns and consistency measure
κn
s of each local source s ∈ Sn, and node weight wk of

every peer node k ∈ [N] (all notations are associated to the
current epoch e unless otherwise specified). Two sub-tasks are
executed: local incremental TD and global TD.

Local Incremental TD is a cross-epoch procedure respon-
sible for generating proposals for the global TD and keeping

track of the reliability degrees of local sources. While previ-
ous solutions have demonstrated formulating an optimization
problem on historical data to realize incremental TD [30], [32],
our scheme faces the unique challenge of Byzantine sources
and needs a new reliability evaluation method for Byzantine
resilience.

For each epoch, the local incremental TD works as follows.
After receiving inputs {xn

s,i}s∈Sn,i∈Be from local sources Sn,
each node n ∈ [N] computes the local truths using the local
source reliability degrees {rns } from the last epoch:

x̃n
i =

∑
s∈Sn

1s,ir
n
s x

n
s,i∑

s∈Sn
1s,irns

∀i ∈ Be (3)

Then node n compiles its proposal Pn = {x̃n
i }i∈Be

and
provides Pn to the consensus process and the ensuing global
TD. After the global TD delivers the estimated global truths
{x̂i}i∈Be

, node n computes an error measure ϵns with mean
square error on objects that s has participated, and a consis-
tency measure κn

s ∈ (0, 1]:

ϵns =

∑
i∈Be

1s,i(x
n
s,i − x̂i)

2∑
i∈Be

1s,i
(4)

κn
s = erfc(β|ϵns − ϵ̊ns |) · (1− α) + κ̊n

s · α (5)

wherein ϵ̊ns and κ̊n
s refer to the corresponding measures from

the last epoch. erfc() is the complementary error function that
is widely used for evaluating statistical accuracy. The intuition
behind using erfc() here is that it is a monotonic decreasing
function and provides a convenient output range (0, 1] for input
range [0,∞). It sharply penalizes input increase when input
is close to 0, which helps stage a swift response to Byzantine
source inputs. The weighted moving average calculation of
κn
s is aimed at space efficiency, as it only needs the most

recent error and consistency measures. α ∈ [0, 1) is a user-
defined decay factor: lower α enables swift reaction to short-
term Byzantine behaviors while higher α helps establish long-
term judgement on Byzantine sources. β > 0 is the scale factor
that depends on the range of input value. α and β are design
choices during implementation.

Finally, node n updates its local source reliability degrees:

rns =
κn
s

ϵns
∀s ∈ Sn (6)

While the error metric ϵns penalizes source s for generally
inaccurate inputs, the consistency measure κn

s (when close to
0) penalizes source s specifically for Byzantine influence. We
provide analysis on how κn

s facilitates the Byzantine resilience
of our system in §V-C.

Global TD is executed by every node to obtain the global
truth estimates {x̂i}i∈Be for epoch e after obtaining the
common subset of proposals CSP = {Pk|k ∈ CS}. CS is the
corresponding subset of node IDs and Pk = {x̃k

i }i∈Be
. As the

problem of Byzantine proposals is addressed by the preceding
WP-ACS consensus (to elaborate in §V-B), we adopt the
conventional optimization-based approach for global TD. With

DECENTRUTH

Oracle Nodes

Compute
Local Truths

Compute
Local Truths

Compute
Local Truths

Global TD

. . .

External
Sources

. . .

...

Feedback for the next epoch’s
WP-ACS session

{ ෤𝑥𝑖
1} → 𝒫1 𝐶𝑆𝑃

𝐶𝑆𝑃

𝐶𝑆𝑃

: { ො𝑥𝑖}, {𝑤𝑛} Update Local Source
Reliability {𝑟𝑠

1}

Update Local Source
Reliability {𝑟𝑠

𝑁}

Update Local Source
Reliability {𝑟𝑠

2}

. . .

. . .

{{𝑥𝑠,𝑖
1 }}

{{𝑥𝑠,𝑖
2 }}

{{𝑥𝑠,𝑖
𝑁 }}

Common Subset
of Proposals

Global Truth Estimates,
Node Weights

...

...

: { ො𝑥𝑖}, {𝑤𝑛}

: { ො𝑥𝑖}, {𝑤𝑛}

Global TD

Global TD

Local Truths
Proposal

{ ෤𝑥𝑖
2} → 𝒫2

{ ෤𝑥𝑖
𝑁} → 𝒫𝑁

Local
Inputs

WP-ACS
(off-chain consensus)

...

...

Fig. 1. DECENTRUTH workflow in one epoch. Data-plane operations that constitute CBI-TD are highlighted in blue.

node weights {wk}∈CS and proposed values {x̃k
i }k∈CS,i∈Be

we formulate the following optimization problem:

min
{wk},{x̂i}

∑
k∈CS

∑
i∈Be

wkd(x̃
k
i , x̂i) s.t.

∑
k∈CS

logwk = 1 (7)

d() can be any distance function, such as the square error we
used for local TD. We keep the form d() for generality.

This problem can be solved by coordinate descent in an
iterative manner. First, we fix the truths estimates {x̂i} and
apply the Lagrange multipliers method to Eq. (7) to get the
best estimate of the weights {wk}. We omit the derivation and
directly give the result (wherein c is a constant):

wk =
c∑

i∈Be
d(x̃k

i , x̂i)
∀k ∈ CS (8)

Next, we fix the weights and aggregate the truths:

x̂i =

∑
n∈CS wnx̃

n
i∑

n∈CS wn
∀i ∈ Be (9)

Eq. (8) and Eq. (9) are executed alternately until a con-
vergence criterion is met. After that {x̂i}Be are committed
to the blockchain as the global truths. Moreover, throughout
the iterations we keep the weights of nodes outside CS,
i.e., {wz}z ̸∈CS , unchanged for consistency. Thus one more
step is needed to normalize the weights of those in CS:
wk ← wk∑

l∈CS wl

(
1−

∑
z ̸∈CS wz

)
,∀k ∈ CS.

B. Component 2: WP-ACS

WP-ACS is the consensus component that enables nodes
to agree on a common set of proposals CSP in the asyn-
chronous network before proceeding to global TD. We define
F := ⌊N−1

3 ⌋ as the maximum possible number of Byzantine
nodes—a design parameter rather than the actual Byzantine
node population (which is Nfn). WP-ACS is designed to
take advantage of the global TD for improving the quality
of its output. In specific, WP-ACS relies on global TD for
feedback on node weights from the last epoch. Proposals from
nodes with lower weights should have a reduced chance of
being included in CSP . The ensuing global TD in turn can
benefit from the improved quality of CSP . This feedback
loop mechanism is essential for DECENTRUTH to penalize
the proposals made by malfunctioning/Byzantine nodes.

Algorithm 1: WP-ACS (for each epoch by node n)
Variables: L, dSet←⊥, coin
Input: Local proposal Pn, node weights {wk}k∈[N]

Output: Common subset of proposals CSP and indices CS

1 Assign L ← {l|wl is among the top N − F of {wk}k∈[N]}
2 Start RBC[n] with Pn as input
3 while true do
4 if receiving the delivery of Pk from RBC[k] and input

has not been provided to BA[k] then
5 if if k ∈ L then
6 Provide input 1 to BA[k]
7 else
8 dSet← dSet ∪ {k}

9 if having provided inputs to at least N − 2F BA
instances with identifiers n ∈ L and dSet ̸=⊥ then

10 for k ∈ dSet do
11 coink ← COMCOIN(k)
12 Provide input coink to BA[k]

13 dSet←⊥
14 if having received outputs of value 1 from at least

N − F BA instances then
15 Provide input 0 to each of the BA instances that has

not been provided input
16 if all N BA instances have output a value then
17 CS ← {k|BA[k] outputs 1}
18 CSP ← {Pk|k ∈ CS} (wait for RBC[k] to deliver

Pk if not received yet)
19 Return CS, CSP

Following the above intuition, we propose the WP-ACS
protocol in Algorithm 1. WP-ACS makes use of the RBC,
BA, COMCOIN primitives as described in §IV-A. In the
beginning, every node computes the priority list L using the
node weights {wn}n∈[N] from the last epoch: L contains
the identifiers of the top N − F nodes ranked by weights,
and their proposals are tagged ‘trustworthy’. Nodes outside
L are considered potentially Byzantine and their proposals
are tagged ‘questionable’. When a node receives the delivery
of proposal Pk from RBC[k] and has not provided input to
BA[k] yet, it provides input 1 to BA[k] if k is in L. If k
is outside L, it is added to the deferred action set dSet.

Only when at least N − 2F BA instances identified in L
have been provided input, will the protocol provide coink to
BA[k] for k ∈ dSet. Here coink ∈ {0, 1} is the common
coin received from COMCOIN(k). When at least N − F BA
instances output 1, all the remaining BA instances are provided
input 0 to facilitate a timely conclusion (per the “termination”
requirement). When all N BA instances have provided an
output, CSP is assigned to the proposals whose corresponding
BA output 1. CSP shall contain at least N−2F ‘trustworthy’
proposals (i.e., identified in L) plus at most F ‘questionable’
ones. Detailed analysis is provided in Propositions 2, 3.

The deferred coin-toss treatment leaves a 1/2 chance for the
‘questionable’ proposals that finish RBC early to be included
in CSP . Our scheme does not reject ‘questionable’ proposals
altogether (i.e., provide input 0 to their BA instances) due to
the following consideration. If Pk falls into the questionable
proposals due to its accidental bad inputs, Pk should be still
given a chance, though reduced, of being considered in the
ensuing global TD in which wk can be re-evaluated. This
essentially provides honest nodes a recovery path from short-
term deterioration in source data quality.

C. Analyses

We show DECENTRUTH’s resilience against Byzantine
sources and nodes under the threat model in §III-B.

Proposition 1 (Byzantine source resilience): In the continu-
ing operation, the accuracy of truth estimates can recover from
degradation caused by suddenly turned Byzantine sources.

Proof Sketch: When source s ∈ Sn turns Byzantine, its
inputs arbitrarily deviate from the ground truths. When updat-
ing local source reliability degrees, the consistency measure κn

s

evaluates the variation of reliability of source s across different
epochs (Eq. (5)). A low κn

s captures that source s is no longer
bound to the fundamental assumption of consistent reliability.
When source s starts to behave Byzantine, node n will assign a
near-to-zero κn

s in the subsequent epochs, resulting in a near-
to-zero reliability degree rns which minimizes the impact of
source s’ subsequent inputs and thus maintains the global TD’s
accuracy. We remark that such quick reaction and accuracy
are built on the honest majority assumption on all sources and
nodes in the threat model, which ensures that probabilistically
more than half of the local truth proposals to WP-ACS are
consistently close to the ground truths.

Proposition 2 (Byzantine node resilience, static case): If
the adversary corrupts up to F := ⌊N−1

3 ⌋ nodes in a static
manner who start behaving Byzantine at some point, then in
the long run, with overwhelming probability, at least 3

4 of the
common subset of proposals (CSP) for each epoch will come
from uncorrupted nodes.

Proof Sketch: For any proposal Pk marked ‘questionable’
(k ̸∈ L), the WP-ACS algorithm’s deferred coin tossing
treatment dictates that the chance of accepting Pk into CSP
is capped by 1

2 , representing the case that RBC[k] is among
the first N − f RBC instances to deliver and coink = 1.
In this case, the expected number of ‘questionable’ proposals
in CSP maxes at F

2 with overwhelming probability (for large

N). Meanwhile, since there will be at least N−F proposals in
CSP , the expected ratio of ‘questionable’ proposals in CSP
is thus capped by F

2(N−F) <
1
4 .

For any corrupted node that has started behaving Byzantine
(e.g., providing tampered proposals), if its proposal is excluded
from CSP for the current epoch, the chance of accepting
its proposal in the next epoch will be capped by 1

4 with
overwhelming probability. On the other hand, if a Byzantine
proposal Pz happens to be included in CSP , the global TD
will assign a low node weight wz as long as Pz deviates
significantly from those of honest nodes. And its next-epoch
proposal will be marked ‘questionable’ again. When more
epochs pass, the group of Byzantine nodes will converge with
the group that constantly provides ‘questionable’ proposals,
resulting in a long-term CSP with at least 3

4 proposals from
the uncorrupted nodes.

Proposition 3 (Byzantine node resilience, adaptive case): If
the adversary can corrupt any targeted nodes (up to F) on an
epoch-to-epoch basis, then at least half of proposals in CSP
will come from honest nodes.

Proof Sketch: We consider the worst case where the
adversary can adaptively corrupt F nodes that all belong to the
‘trustworthy’ category (corresponding to those in L), and its
network scheduling capability can make the RBC instances of
corrupted nodes delivery ahead of honest nodes. This results
in a Byzantine proposal ratio in CSP of F

N−F , which is less
than 1

2 . This means the subsequent global TD can still rely on
the honest-majority proposals in CSP for truth aggregation
and assign lower weights to the corrupted nodes.

Complexity. The communication overhead solely comes
from the protocol messages of WP-ACS. The communication
complexity of WP-ACS follows from its composing primitives,
namely RBC [43], BA [41] and COMCOIN [40], yielding
complexity of O(N |P| + λN2 logN) bits per node. |P| is
the size of a proposal in bits and λ is a security parameter of
COMCOIN. The computation complexity is contributed by the
CBI-TD in the data plane and the cryptographic computations
in WP-ACS’ RBC and BA components. In the data plane
alone, the local incremental TD and global TD yield Θ(S

N)
and Θ(N) truth evaluations per epoch, resulting in Θ(S

N +N)
data-plane complexity at each node for each epoch.

VI. IMPLEMENTATION AND EVALUATION

We implemented a DECENTRUTH node prototype in
Python. The CBI-TD component contains the local incremen-
tal TD and global TD modules as in Fig. 1. For the WP-
ACS component, we adopted the implementation of RBC
and BA primitives from HoneyBadgerBFT [25] while directly
instantiating COMCOIN with pre-distributed secret shares for
reducing cryptographic overhead. The node-to-node message
format includes a node identifier, protocol instance identifier,
message type (RBC or BA and subtypes), and a 1500-byte
payload for truth proposal. We implemented an environment
simulator env that can simulate data inputs under Byzantine
influence to each node and also introduce delays for any node-
to-node message. For comparison, we also implemented a

0.4 0.6 0.8
P (Source Participation Rate)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
RM

SE
 (L

on
g-

te
rm

)

Median (Chainlink), N = 5
Median (Chainlink), N = 10
DecenTruth, N = 5
DecenTruth, N = 10

(a) RMSE vs P (Nasdaq-100 dataset)

0.2 0.4 0.6 0.8
P (Source Participation Rate)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

RM
SE

 (L
on

g-
te

rm
)

Median (Chainlink), N = 10
Median (Chainlink), N = 20
Median (Chainlink), N = 50

DecenTruth, N = 10
DecenTruth, N = 20
DecenTruth, N = 50

(b) RMSE vs P (synthetic dataset)

0 0.2 0.4
fs (Byzantine Source Ratio)

0.00

0.02

0.04

0.06

0.08

RM
SE

 (L
on

g-
te

rm
)

DecenTruth, fn = 0
DecenTruth, fn = 0.3
Median (Chainlink), fn = 0
Median (Chainlink), fn = 0.3

(c) RMSE vs fs, fn (synthetic dataset)

Fig. 2. Long-term RMSE results. Other parameters: (a)(b) fs = 0.4, fn = 0.3. (c) N = 20, P = 0.5.

reference routine called Median to emulate Chainlink’s [13]
aggregation scheme whereby for each data object, each node’s
proposal is the median of the inputs from local sources and
the median of all proposals serves as the final data feed.

Evaluation Setting. We evaluated DECENTRUTH’s per-
formance as an oracle service through simulation experiments
on an AWS c5.12xlarge instance (48 vCPU, 96GB memory,
Ubuntu 20.04 LTS). For each experiment, N ∈ {5, 10, 20, 50}
DECENTRUTH nodes ran in parallel along with one env
instance. The maximum number of Byzantine nodes F , a
design parameter, was fixed to ⌊N−1

3 ⌋. Packet delay between
any two nodes was randomly sampled from the exponential
distribution of rate 1

mdelay , simulating volatile communication
delays, with mean delay mdelay ∈ {0.2, 0.4, 0.8}sec. env was
pre-loaded with the datasets and randomly assigned the data to
N source groups, each group being local to a node. The data
were provided to the nodes during runtime on a batch basis.
To simulate a source participation rate of P ∈ (0, 1), every
input was discarded with probability 1− P . For comparison,
we instantiated the Median nodes in the same machine that
hosted DECENTRUTH nodes.

Dataset. We used the Nasdaq-100 dataset, a part of the
Stock dataset [44] that is widely used in TD research, in
selected experiments. Nasdaq-100 contains the daily closing
price inputs from 55 sources on 100 Nasdaq stock symbols in
the 21 trading days of July 2011. We also generated a synthetic
dataset containing inputs from 1,000 sources on 10,000 data
objects with normalized value, with batch size B fixed to
100, simulating a bigger Nasdaq-100 dataset. As a result, the
10,000 data objects were delivered in 100 epochs. Each input
xs,i from source s on object i was randomly sampled from
N(ẋi, δs) bounded by [0, 1], with ẋi being the ground truth. δs
was a predetermined value randomly sampled from U(0, 0.5),
representing the intrinsic unpredictability of source s. Building
on top of a large number of data objects and sources in this
synthetic dataset, we are able to evaluate the performance
of DECENTRUTH upon malicious modification by Byzantine
sources at different settings.

To evaluate our system’s Byzantine resilience, we im-
posed Byzantine behaviors on the synthetic dataset. Byzantine
sources and nodes could arbitrarily deviate their output data
but still within the [0, 1] range. For each experiment run

iterating through 10,000 objects (with batch size B), three
“Byzantine mutinies” took place sequentially. fs ratio of all
sources eventually turned Byzantine with the first half turning
at epoch 20 and the second half turning at epoch 40. fn
ratio of all N nodes turn Byzantine at epoch 80. Lastly, for
the moving average scheme in Eq. 5 we heuristically chose
the decay factor α = 0.9 and scale factor β = 100 after
exploring DECENTRUTH with the synthetic data for the fastest
recovery from a Byzantine source mutiny (we will explore
more rigorous tuning methods in future work).

A. Data-plane Performance and Byzantine Resilience

We first evaluated the long-term TD accuracy of DECEN-
TRUTH and its Byzantine resilience. For each run, we collected
the last 10% batches of estimated truths and computed their
root-mean-square error (RMSE) against the ground truths.
RMSE quantifies the system’s overall TD (in)accuracy. Fig.
2(a) shows the data-plane performance of DECENTRUTH on
the Nasdaq-100 dataset. When the source participation rate
is low (i.e., P = 0.4), the Median method under N = 10
fails to converge while DECENTRUTH still does. For higher P
where both DECENTRUTH and Median converge, the RMSE
results are significantly lower than those in Fig 2(b) where the
synthetic dataset was used. This is because we did not intro-
duce Byzantine mutinies to the Nasdaq-100 dataset. Both Fig
2(b) and Fig. 2(c) also show that DECENTRUTH outperforms
Median under every evaluation case by a significant margin.
Meanwhile, larger N leads to higher RMSE of DECENTRUTH
especially when source participation rate P is low, as shown
in Fig. 2(b). Here we give a possible explanation. For low P
and large N , each node receives a small number of inputs and
a significant portion of objects are not covered by any input
at all. The proposals received by global TD will thus find
less common ground in approaching ground truths. Fig. 2(c)
shows the influence of Byzantine sources and nodes at a fixed
N . Higher Byzantine source ratio (fs) and Byzantine node
ratio (fn) both contribute to higher RMSE, but are limited in
scale compared to the impact of low P , as Fig 2(b) shows.

To provide deeper insight into DECENTRUTH’s resilience
to adaptive Byzantine influence and the data-plane perfor-
mance in real-time, we measured the per-batch RMSE, av-
erage Byzantine source reliability degree (AvgBSR), average

0 20 40 60 80 100
e (epoch number)

0.00

0.02

0.04

0.06

0.08

0.10
RM

SE
 p

er
 b

at
ch

Median (Chainlink), N = 10
Median (Chainlink), N = 20
Median (Chainlink), N = 50
DecenTruth, N = 10
DecenTruth, N = 20
DecenTruth, N = 50

(a) RMSE result across epochs

0 20 40 60 80 100
e (epoch number)

0.0

0.2

0.4

0.6

0.8

1.0

Av
gB

SR
 (N

or
m

al
ize

d)

DecenTruth, N = 10
DecenTruth, N = 20
DecenTruth, N = 50

(b) Avg. Byzantine source reliability degree

0 20 40 60 80 100
e (epoch number)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
gB

NW
 (N

or
m

al
ize

d)

DecenTruth, N = 10
DecenTruth, N = 20
DecenTruth, N = 50

(c) Avg. weight of Byzantine nodes

Fig. 3. Temporal data-plane performance showing DECENTRUTH’s Byzantine resilience (parameters: P = 0.5, fs = 0.4, fn = 0.3). The synthetic dataset
was used. The first (second) half of Byzantine sources turned active at epoch 20 (40). All Byzantine nodes turned active at epoch 80.

Byzantine node weight (AvgBNW) throughout the 100 epochs.
Fig. 3(a) demonstrates DECENTRUTH’s quick comeback in
accuracy at the start and the two Byzantine source mutinies
(at epoch 20 and 40), which is in contrast to Median’s
deteriorating performance. Fig. 3(b) further demonstrates DE-
CENTRUTH’s capability in detecting Byzantine behaviors and
assigning low reliability degrees to Byzantine sources. A simi-
lar swift response is also observed for the weights of Byzantine
nodes (turned active at epoch 80) as illustrated in Fig. 3(c).
AvgBNW quickly reduces to near-zero, demonstrating the
system’s swift response to compromised nodes and ability to
retain high TD accuracy.

Fig. 3(a) also shows that experiments with larger N expe-
rienced deeper accuracy degradation, as is indicated by the
blue curve’s steeper increase in RMSE after each Byzantine
mutiny. A plausible reason is that a larger N means fewer local
sources per node; individual nodes are more likely to encounter
a situation of Byzantine majority among local sources.

B. Consensus Runtime

We evaluated the consensus runtime of WP-ACS under
different networking scenarios. Fig. 4 shows the consensus
runtime results under different N and mdelay. It shows
the consensus runtime grows linearly in mdelay for small
N and grows quadratically in N . And N tends to have a
bigger performance impact as it increases. We speculate a
two-fold reason: (1) larger N leads to higher cryptographic
computation overhead at each node; (2) the total processing
capacity of our simulation environment was limited so that the
cryptographic computation overhead could easily overshadow
the communication overhead. For practical deployment, we
recommend N be controlled in a reasonable size in order to
limit the consensus latency while ensuring a two-thirds honest
majority (similar to Chainlink [13] which has 21 oracle nodes).
In future work, we plan to use lightweight cryptography to
instantiate the RBC and BA components of WP-ACS in a
more efficient manner, with lessons from the asynchronous
BFT consensus research [26], [45], [46], [47]. Lastly, the
data-plane runtime results (of CBI-TD) are obviated in this
paper. We observed that its cumulative computation time of
one epoch was generally within one second.

10 20 30 40 50
N (Number of Nodes)

10

20

30

40

50

60

70

Co
ns

en
su

s R
un

tim
e

(s
ec

)

mdelay = 0.8sec
mdelay = 0.4sec
mdelay = 0.2sec

Fig. 4. WP-ACS consensus runtime for one epoch (parameters: P =
0.5, fs = 0.4, fn = 0.3).

VII. CONCLUSION

Eyeing on truthful data challenge facing blockchain oracles,
we propose a new decentralized truth-discovering oracles
model (DTDO) to enable blockchain applications to obtain
truthful data on from potentially malicious external sources
while preserving the decentralized purpose of a blockchain
application. As a concrete instantiation of this model, we
introduce DECENTRUTH harmonizing techniques from two
domains, namely truth discovery (TD) and asynchronous BFT
consensus, while addressing challenges in system resilience
under the threat of Byzantine sources and nodes. We im-
plemented DECENTRUTH and evaluated its performance in
an emulated oracle service scenario. The result demonstrates
that DECENTRUTH outperforms the median-based aggregation
mechanism used in existing solutions in terms of TD accuracy
and Byzantine resilience by a significant margin.

In future work, we will work on the following improve-
ments: (1) improving the scalability of DECENTRUTH by
developing more efficient WP-ACS consensus, (2) addressing
the more challenging data-plane scenario when there is no
“ground truth” of each data object, and (2) defending against
the adversary who can slowly “poison” the data sources.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under grants CNS-1916902, CNS-1916926, CNS-
2154929, and CNS-2154930, and the Office of Naval Research
under grant N00014-19-1-2621.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[2] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work,” White Paper, vol. 21, pp. 2327–4662, 2016.

[3] EOS.IO, “EOS.IO technical white paper v2,” 2018.
[4] S. Ellis, A. Juels, and S. Nazarov, “Chainlink a decentralized oracle

network,” Retrieved March, vol. 11, p. 2018, 2017.
[5] Chainlink, “77+ smart contract use cases enabled by chainlink.” https:

//blog.chain.link/smart-contract-use-cases/, 2022.
[6] M. Bartholic, A. Laszka, G. Yamamoto, and E. W. Burger, “A taxonomy

of blockchain oracles: The truth depends on the question,” in 2022 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
pp. 1–15, IEEE, 2022.

[7] Chainlink, “What is the blockchain oracle problem?.” https://blog.chain.
link/what-is-the-blockchain-oracle-problem/, 2022.

[8] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pp. 270–282, 2016.

[9] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco: Lib-
erating web data using decentralized oracles for tls,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1919–1938, 2020.

[10] J. Guarnizo and P. Szalachowski, “Pdfs: practical data feed service for
smart contracts,” in European Symposium on Research in Computer
Security, pp. 767–789, Springer, 2019.

[11] B. Benligiray, S. Milic, and H. Vänttinen, “Decentralized APIs for Web
3.0,” API3 Foundation Whitepaper, 2020.

[12] T. Geron, “Crypto oracles are a hidden vulnerability.” https://www.
protocol.com/newsletters/protocol-fintech/data-oracles-crypto, 2022.

[13] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels,
F. Koushanfar, A. Miller, B. Magauran, D. Moroz, et al., “Chainlink 2.0:
Next steps in the evolution of decentralized oracle networks,” 2021.

[14] UMA, “UMA Protocol.” https://docs.umaproject.org/, 2022.
[15] WINkLink, “Introduction to WINkLink.” https://doc.winklink.org/v1/

doc/en/, 2022.
[16] Band Protocol, “Bandchain whitepaper.” https://docs.bandchain.org/

whitepaper/, 2022.
[17] Chainlink, “The 3 levels of data aggregation

in chainlink price feeds.” https://blog.chain.link/
levels-of-data-aggregation-in-chainlink-price-feeds/, 2020.

[18] X. Yin, J. Han, and S. Y. Philip, “Truth discovery with multiple
conflicting information providers on the web,” IEEE Transactions on
Knowledge and Data Engineering, vol. 20, no. 6, pp. 796–808, 2008.

[19] F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao, H. Ji, and
J. Han, “Faitcrowd: Fine grained truth discovery for crowdsourced data
aggregation,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 745–754,
2015.

[20] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J. Han,
“A survey on truth discovery,” ACM Sigkdd Explorations Newsletter,
vol. 17, no. 2, pp. 1–16, 2016.

[21] R. W. Ouyang, L. M. Kaplan, A. Toniolo, M. Srivastava, and T. J. Nor-
man, “Parallel and streaming truth discovery in large-scale quantitative
crowdsourcing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 10, pp. 2984–2997, 2016.

[22] D. Zhang, D. Wang, N. Vance, Y. Zhang, and S. Mike, “On scalable
and robust truth discovery in big data social media sensing applications,”
IEEE Transactions on Big Data, vol. 5, no. 2, pp. 195–208, 2018.

[23] Y. Wang, F. Ma, L. Su, and J. Gao, “Discovering truths from distributed
data,” in 2017 IEEE International Conference on Data Mining (ICDM),
pp. 505–514, IEEE, 2017.

[24] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computa-
tions with optimal resilience,” in Proceedings of the thirteenth annual
ACM symposium on Principles of distributed computing, pp. 183–192,
1994.

[25] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 31–42, 2016.

[26] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made
practical,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2028–2041, 2018.

[27] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kas-
tania, “Astraea: A decentralized blockchain oracle,” in 2018 IEEE
international conference on internet of things (IThings) and IEEE green
computing and communications (GreenCom) and IEEE cyber, physical
and social computing (CPSCom) and IEEE smart data (SmartData),
pp. 1145–1152, IEEE, 2018.

[28] Y. Cai, N. Irtija, E. E. Tsiropoulou, and A. Veneris, “Truthful decentral-
ized blockchain oracles,” International Journal of Network Management,
p. e2179, 2021.

[29] D. Wang, T. Abdelzaher, L. Kaplan, and C. C. Aggarwal, “Recursive
fact-finding: A streaming approach to truth estimation in crowdsourcing
applications,” in 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, pp. 530–539, IEEE, 2013.

[30] Z. Zhao, J. Cheng, and W. Ng, “Truth discovery in data streams: A
single-pass probabilistic approach,” in Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge
Management, pp. 1589–1598, 2014.

[31] J. Kim, B. Tabibian, A. Oh, B. Schölkopf, and M. Gomez-Rodriguez,
“Leveraging the crowd to detect and reduce the spread of fake news
and misinformation,” in Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pp. 324–332, 2018.

[32] Y. Li, Q. Li, J. Gao, L. Su, B. Zhao, W. Fan, and J. Han, “On the
discovery of evolving truth,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 675–684, 2015.

[33] Y. Tian, J. Yuan, and H. Song, “Secure and reliable decentralized truth
discovery using blockchain,” in 2019 IEEE Conference on Communica-
tions and Network Security (CNS), pp. 1–8, IEEE, 2019.

[34] L. Fu, J. Xu, S. Qu, Z. Xu, X. Wang, and G. Chen, “Seeking the truth in
a decentralized manner,” IEEE/ACM Transactions on Networking, 2021.

[35] H. Attiya and J. Welch, Distributed computing: fundamentals, simula-
tions, and advanced topics, vol. 19. John Wiley & Sons, 2004.

[36] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[37] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” in Concurrency: the Works of Leslie Lamport, pp. 203–226, ACM,
2019.

[38] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp. 228–
234, 1980.

[39] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[40] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[41] A. Mostefaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous byzantine consensus with t< n/3 and o (n2) messages,” in
Proceedings of the 2014 ACM symposium on Principles of distributed
computing, pp. 2–9, 2014.

[42] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983), pp. 403–409,
IEEE, 1983.

[43] C. Cachin and S. Tessaro, “Asynchronous verifiable information dis-
persal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), pp. 191–201, IEEE, 2005.

[44] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava, “Truth
finding on the deep web: Is the problem solved?,” arXiv preprint
arXiv:1503.00303, 2015.

[45] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pp. 803–818,
2020.

[46] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal multi-
valued validated asynchronous byzantine agreement, revisited,” in Pro-
ceedings of the 39th Symposium on Principles of Distributed Computing,
pp. 129–138, 2020.

[47] T. Crain, C. Natoli, and V. Gramoli, “Red belly: a secure, fair and
scalable open blockchain,” in 2021 IEEE Symposium on Security and
Privacy (SP), pp. 466–483, IEEE, 2021.

